Show More
Commit Description:
change logger to be limited by file size
Commit Description:
change logger to be limited by file size
References:
File last commit:
Show/Diff file:
Action:
node_modules/unicode-trie/builder.js
| 960 lines
| 30.6 KiB
| application/javascript
| JavascriptLexer
|
r789 | const UnicodeTrie = require('./'); | ||
const pako = require('pako'); | |||
// Shift size for getting the index-1 table offset. | |||
const SHIFT_1 = 6 + 5; | |||
// Shift size for getting the index-2 table offset. | |||
const SHIFT_2 = 5; | |||
// Difference between the two shift sizes, | |||
// for getting an index-1 offset from an index-2 offset. 6=11-5 | |||
const SHIFT_1_2 = SHIFT_1 - SHIFT_2; | |||
// Number of index-1 entries for the BMP. 32=0x20 | |||
// This part of the index-1 table is omitted from the serialized form. | |||
const OMITTED_BMP_INDEX_1_LENGTH = 0x10000 >> SHIFT_1; | |||
// Number of code points per index-1 table entry. 2048=0x800 | |||
const CP_PER_INDEX_1_ENTRY = 1 << SHIFT_1; | |||
// Number of entries in an index-2 block. 64=0x40 | |||
const INDEX_2_BLOCK_LENGTH = 1 << SHIFT_1_2; | |||
// Mask for getting the lower bits for the in-index-2-block offset. */ | |||
const INDEX_2_MASK = INDEX_2_BLOCK_LENGTH - 1; | |||
// Number of entries in a data block. 32=0x20 | |||
const DATA_BLOCK_LENGTH = 1 << SHIFT_2; | |||
// Mask for getting the lower bits for the in-data-block offset. | |||
const DATA_MASK = DATA_BLOCK_LENGTH - 1; | |||
// Shift size for shifting left the index array values. | |||
// Increases possible data size with 16-bit index values at the cost | |||
// of compactability. | |||
// This requires data blocks to be aligned by DATA_GRANULARITY. | |||
const INDEX_SHIFT = 2; | |||
// The alignment size of a data block. Also the granularity for compaction. | |||
const DATA_GRANULARITY = 1 << INDEX_SHIFT; | |||
// The BMP part of the index-2 table is fixed and linear and starts at offset 0. | |||
// Length=2048=0x800=0x10000>>SHIFT_2. | |||
const INDEX_2_OFFSET = 0; | |||
// The part of the index-2 table for U+D800..U+DBFF stores values for | |||
// lead surrogate code _units_ not code _points_. | |||
// Values for lead surrogate code _points_ are indexed with this portion of the table. | |||
// Length=32=0x20=0x400>>SHIFT_2. (There are 1024=0x400 lead surrogates.) | |||
const LSCP_INDEX_2_OFFSET = 0x10000 >> SHIFT_2; | |||
const LSCP_INDEX_2_LENGTH = 0x400 >> SHIFT_2; | |||
// Count the lengths of both BMP pieces. 2080=0x820 | |||
const INDEX_2_BMP_LENGTH = LSCP_INDEX_2_OFFSET + LSCP_INDEX_2_LENGTH; | |||
// The 2-byte UTF-8 version of the index-2 table follows at offset 2080=0x820. | |||
// Length 32=0x20 for lead bytes C0..DF, regardless of SHIFT_2. | |||
const UTF8_2B_INDEX_2_OFFSET = INDEX_2_BMP_LENGTH; | |||
const UTF8_2B_INDEX_2_LENGTH = 0x800 >> 6; // U+0800 is the first code point after 2-byte UTF-8 | |||
// The index-1 table, only used for supplementary code points, at offset 2112=0x840. | |||
// Variable length, for code points up to highStart, where the last single-value range starts. | |||
// Maximum length 512=0x200=0x100000>>SHIFT_1. | |||
// (For 0x100000 supplementary code points U+10000..U+10ffff.) | |||
// | |||
// The part of the index-2 table for supplementary code points starts | |||
// after this index-1 table. | |||
// | |||
// Both the index-1 table and the following part of the index-2 table | |||
// are omitted completely if there is only BMP data. | |||
const INDEX_1_OFFSET = UTF8_2B_INDEX_2_OFFSET + UTF8_2B_INDEX_2_LENGTH; | |||
const MAX_INDEX_1_LENGTH = 0x100000 >> SHIFT_1; | |||
// The illegal-UTF-8 data block follows the ASCII block, at offset 128=0x80. | |||
// Used with linear access for single bytes 0..0xbf for simple error handling. | |||
// Length 64=0x40, not DATA_BLOCK_LENGTH. | |||
const BAD_UTF8_DATA_OFFSET = 0x80; | |||
// The start of non-linear-ASCII data blocks, at offset 192=0xc0. | |||
// !!!! | |||
const DATA_START_OFFSET = 0xc0; | |||
// The null data block. | |||
// Length 64=0x40 even if DATA_BLOCK_LENGTH is smaller, | |||
// to work with 6-bit trail bytes from 2-byte UTF-8. | |||
const DATA_NULL_OFFSET = DATA_START_OFFSET; | |||
// The start of allocated data blocks. | |||
const NEW_DATA_START_OFFSET = DATA_NULL_OFFSET + 0x40; | |||
// The start of data blocks for U+0800 and above. | |||
// Below, compaction uses a block length of 64 for 2-byte UTF-8. | |||
// From here on, compaction uses DATA_BLOCK_LENGTH. | |||
// Data values for 0x780 code points beyond ASCII. | |||
const DATA_0800_OFFSET = NEW_DATA_START_OFFSET + 0x780; | |||
// Start with allocation of 16k data entries. */ | |||
const INITIAL_DATA_LENGTH = 1 << 14; | |||
// Grow about 8x each time. | |||
const MEDIUM_DATA_LENGTH = 1 << 17; | |||
// Maximum length of the runtime data array. | |||
// Limited by 16-bit index values that are left-shifted by INDEX_SHIFT, | |||
// and by uint16_t UTrie2Header.shiftedDataLength. | |||
const MAX_DATA_LENGTH_RUNTIME = 0xffff << INDEX_SHIFT; | |||
const INDEX_1_LENGTH = 0x110000 >> SHIFT_1; | |||
// Maximum length of the build-time data array. | |||
// One entry per 0x110000 code points, plus the illegal-UTF-8 block and the null block, | |||
// plus values for the 0x400 surrogate code units. | |||
const MAX_DATA_LENGTH_BUILDTIME = 0x110000 + 0x40 + 0x40 + 0x400; | |||
// At build time, leave a gap in the index-2 table, | |||
// at least as long as the maximum lengths of the 2-byte UTF-8 index-2 table | |||
// and the supplementary index-1 table. | |||
// Round up to INDEX_2_BLOCK_LENGTH for proper compacting. | |||
const INDEX_GAP_OFFSET = INDEX_2_BMP_LENGTH; | |||
const INDEX_GAP_LENGTH = ((UTF8_2B_INDEX_2_LENGTH + MAX_INDEX_1_LENGTH) + INDEX_2_MASK) & ~INDEX_2_MASK; | |||
// Maximum length of the build-time index-2 array. | |||
// Maximum number of Unicode code points (0x110000) shifted right by SHIFT_2, | |||
// plus the part of the index-2 table for lead surrogate code points, | |||
// plus the build-time index gap, | |||
// plus the null index-2 block.) | |||
const MAX_INDEX_2_LENGTH = (0x110000 >> SHIFT_2) + LSCP_INDEX_2_LENGTH + INDEX_GAP_LENGTH + INDEX_2_BLOCK_LENGTH; | |||
// The null index-2 block, following the gap in the index-2 table. | |||
const INDEX_2_NULL_OFFSET = INDEX_GAP_OFFSET + INDEX_GAP_LENGTH; | |||
// The start of allocated index-2 blocks. | |||
const INDEX_2_START_OFFSET = INDEX_2_NULL_OFFSET + INDEX_2_BLOCK_LENGTH; | |||
// Maximum length of the runtime index array. | |||
// Limited by its own 16-bit index values, and by uint16_t UTrie2Header.indexLength. | |||
// (The actual maximum length is lower, | |||
// (0x110000>>SHIFT_2)+UTF8_2B_INDEX_2_LENGTH+MAX_INDEX_1_LENGTH.) | |||
const MAX_INDEX_LENGTH = 0xffff; | |||
const equal_int = (a, s, t, length) => { | |||
for (let i = 0; i < length; i++) { | |||
if (a[s + i] !== a[t + i]) { | |||
return false; | |||
} | |||
} | |||
return true; | |||
}; | |||
class UnicodeTrieBuilder { | |||
constructor(initialValue, errorValue) { | |||
let i, j; | |||
if (initialValue == null) { | |||
initialValue = 0; | |||
} | |||
this.initialValue = initialValue; | |||
if (errorValue == null) { | |||
errorValue = 0; | |||
} | |||
this.errorValue = errorValue; | |||
this.index1 = new Int32Array(INDEX_1_LENGTH); | |||
this.index2 = new Int32Array(MAX_INDEX_2_LENGTH); | |||
this.highStart = 0x110000; | |||
this.data = new Uint32Array(INITIAL_DATA_LENGTH); | |||
this.dataCapacity = INITIAL_DATA_LENGTH; | |||
this.firstFreeBlock = 0; | |||
this.isCompacted = false; | |||
// Multi-purpose per-data-block table. | |||
// | |||
// Before compacting: | |||
// | |||
// Per-data-block reference counters/free-block list. | |||
// 0: unused | |||
// >0: reference counter (number of index-2 entries pointing here) | |||
// <0: next free data block in free-block list | |||
// | |||
// While compacting: | |||
// | |||
// Map of adjusted indexes, used in compactData() and compactIndex2(). | |||
// Maps from original indexes to new ones. | |||
this.map = new Int32Array(MAX_DATA_LENGTH_BUILDTIME >> SHIFT_2); | |||
for (i = 0; i < 0x80; i++) { | |||
this.data[i] = this.initialValue; | |||
} | |||
for (i = i; i < 0xc0; i++) { | |||
this.data[i] = this.errorValue; | |||
} | |||
for (i = DATA_NULL_OFFSET; i < NEW_DATA_START_OFFSET; i++) { | |||
this.data[i] = this.initialValue; | |||
} | |||
this.dataNullOffset = DATA_NULL_OFFSET; | |||
this.dataLength = NEW_DATA_START_OFFSET; | |||
// set the index-2 indexes for the 2=0x80>>SHIFT_2 ASCII data blocks | |||
i = 0; | |||
for (j = 0; j < 0x80; j += DATA_BLOCK_LENGTH) { | |||
this.index2[i] = j; | |||
this.map[i++] = 1; | |||
} | |||
// reference counts for the bad-UTF-8-data block | |||
for (j = j; j < 0xc0; j += DATA_BLOCK_LENGTH) { | |||
this.map[i++] = 0; | |||
} | |||
// Reference counts for the null data block: all blocks except for the ASCII blocks. | |||
// Plus 1 so that we don't drop this block during compaction. | |||
// Plus as many as needed for lead surrogate code points. | |||
// i==newTrie->dataNullOffset | |||
this.map[i++] = ((0x110000 >> SHIFT_2) - (0x80 >> SHIFT_2)) + 1 + LSCP_INDEX_2_LENGTH; | |||
j += DATA_BLOCK_LENGTH; | |||
for (j = j; j < NEW_DATA_START_OFFSET; j += DATA_BLOCK_LENGTH) { | |||
this.map[i++] = 0; | |||
} | |||
// set the remaining indexes in the BMP index-2 block | |||
// to the null data block | |||
for (i = 0x80 >> SHIFT_2; i < INDEX_2_BMP_LENGTH; i++) { | |||
this.index2[i] = DATA_NULL_OFFSET; | |||
} | |||
// Fill the index gap with impossible values so that compaction | |||
// does not overlap other index-2 blocks with the gap. | |||
for (i = 0; i < INDEX_GAP_LENGTH; i++) { | |||
this.index2[INDEX_GAP_OFFSET + i] = -1; | |||
} | |||
// set the indexes in the null index-2 block | |||
for (i = 0; i < INDEX_2_BLOCK_LENGTH; i++) { | |||
this.index2[INDEX_2_NULL_OFFSET + i] = DATA_NULL_OFFSET; | |||
} | |||
this.index2NullOffset = INDEX_2_NULL_OFFSET; | |||
this.index2Length = INDEX_2_START_OFFSET; | |||
// set the index-1 indexes for the linear index-2 block | |||
j = 0; | |||
for (i = 0; i < OMITTED_BMP_INDEX_1_LENGTH; i++) { | |||
this.index1[i] = j; | |||
j += INDEX_2_BLOCK_LENGTH; | |||
} | |||
// set the remaining index-1 indexes to the null index-2 block | |||
for (i = i; i < INDEX_1_LENGTH; i++) { | |||
this.index1[i] = INDEX_2_NULL_OFFSET; | |||
} | |||
// Preallocate and reset data for U+0080..U+07ff, | |||
// for 2-byte UTF-8 which will be compacted in 64-blocks | |||
// even if DATA_BLOCK_LENGTH is smaller. | |||
for (i = 0x80; i < 0x800; i += DATA_BLOCK_LENGTH) { | |||
this.set(i, this.initialValue); | |||
} | |||
} | |||
set(codePoint, value) { | |||
if ((codePoint < 0) || (codePoint > 0x10ffff)) { | |||
throw new Error('Invalid code point'); | |||
} | |||
if (this.isCompacted) { | |||
throw new Error('Already compacted'); | |||
} | |||
const block = this._getDataBlock(codePoint, true); | |||
this.data[block + (codePoint & DATA_MASK)] = value; | |||
return this; | |||
} | |||
setRange(start, end, value, overwrite) { | |||
let block, repeatBlock; | |||
if (overwrite == null) { | |||
overwrite = true; | |||
} | |||
if ((start > 0x10ffff) || (end > 0x10ffff) || (start > end)) { | |||
throw new Error('Invalid code point'); | |||
} | |||
if (this.isCompacted) { | |||
throw new Error('Already compacted'); | |||
} | |||
if (!overwrite && (value === this.initialValue)) { | |||
return this; // nothing to do | |||
} | |||
let limit = end + 1; | |||
if ((start & DATA_MASK) !== 0) { | |||
// set partial block at [start..following block boundary | |||
block = this._getDataBlock(start, true); | |||
const nextStart = (start + DATA_BLOCK_LENGTH) & ~DATA_MASK; | |||
if (nextStart <= limit) { | |||
this._fillBlock(block, start & DATA_MASK, DATA_BLOCK_LENGTH, value, this.initialValue, overwrite); | |||
start = nextStart; | |||
} else { | |||
this._fillBlock(block, start & DATA_MASK, limit & DATA_MASK, value, this.initialValue, overwrite); | |||
return this; | |||
} | |||
} | |||
// number of positions in the last, partial block | |||
const rest = limit & DATA_MASK; | |||
// round down limit to a block boundary | |||
limit &= ~DATA_MASK; | |||
// iterate over all-value blocks | |||
if (value === this.initialValue) { | |||
repeatBlock = this.dataNullOffset; | |||
} else { | |||
repeatBlock = -1; | |||
} | |||
while (start < limit) { | |||
let setRepeatBlock = false; | |||
if ((value === this.initialValue) && this._isInNullBlock(start, true)) { | |||
start += DATA_BLOCK_LENGTH; // nothing to do | |||
continue; | |||
} | |||
// get index value | |||
let i2 = this._getIndex2Block(start, true); | |||
i2 += (start >> SHIFT_2) & INDEX_2_MASK; | |||
block = this.index2[i2]; | |||
if (this._isWritableBlock(block)) { | |||
// already allocated | |||
if (overwrite && (block >= DATA_0800_OFFSET)) { | |||
// We overwrite all values, and it's not a | |||
// protected (ASCII-linear or 2-byte UTF-8) block: | |||
// replace with the repeatBlock. | |||
setRepeatBlock = true; | |||
} else { | |||
// protected block: just write the values into this block | |||
this._fillBlock(block, 0, DATA_BLOCK_LENGTH, value, this.initialValue, overwrite); | |||
} | |||
} else if ((this.data[block] !== value) && (overwrite || (block === this.dataNullOffset))) { | |||
// Set the repeatBlock instead of the null block or previous repeat block: | |||
// | |||
// If !isWritableBlock() then all entries in the block have the same value | |||
// because it's the null block or a range block (the repeatBlock from a previous | |||
// call to utrie2_setRange32()). | |||
// No other blocks are used multiple times before compacting. | |||
// | |||
// The null block is the only non-writable block with the initialValue because | |||
// of the repeatBlock initialization above. (If value==initialValue, then | |||
// the repeatBlock will be the null data block.) | |||
// | |||
// We set our repeatBlock if the desired value differs from the block's value, | |||
// and if we overwrite any data or if the data is all initial values | |||
// (which is the same as the block being the null block, see above). | |||
setRepeatBlock = true; | |||
} | |||
if (setRepeatBlock) { | |||
if (repeatBlock >= 0) { | |||
this._setIndex2Entry(i2, repeatBlock); | |||
} else { | |||
// create and set and fill the repeatBlock | |||
repeatBlock = this._getDataBlock(start, true); | |||
this._writeBlock(repeatBlock, value); | |||
} | |||
} | |||
start += DATA_BLOCK_LENGTH; | |||
} | |||
if (rest > 0) { | |||
// set partial block at [last block boundary..limit | |||
block = this._getDataBlock(start, true); | |||
this._fillBlock(block, 0, rest, value, this.initialValue, overwrite); | |||
} | |||
return this; | |||
} | |||
get(c, fromLSCP) { | |||
let i2; | |||
if (fromLSCP == null) { | |||
fromLSCP = true; | |||
} | |||
if ((c < 0) || (c > 0x10ffff)) { | |||
return this.errorValue; | |||
} | |||
if ((c >= this.highStart) && (!((c >= 0xd800) && (c < 0xdc00)) || fromLSCP)) { | |||
return this.data[this.dataLength - DATA_GRANULARITY]; | |||
} | |||
if (((c >= 0xd800) && (c < 0xdc00)) && fromLSCP) { | |||
i2 = (LSCP_INDEX_2_OFFSET - (0xd800 >> SHIFT_2)) + (c >> SHIFT_2); | |||
} else { | |||
i2 = this.index1[c >> SHIFT_1] + ((c >> SHIFT_2) & INDEX_2_MASK); | |||
} | |||
const block = this.index2[i2]; | |||
return this.data[block + (c & DATA_MASK)]; | |||
} | |||
_isInNullBlock(c, forLSCP) { | |||
let i2; | |||
if (((c & 0xfffffc00) === 0xd800) && forLSCP) { | |||
i2 = (LSCP_INDEX_2_OFFSET - (0xd800 >> SHIFT_2)) + (c >> SHIFT_2); | |||
} else { | |||
i2 = this.index1[c >> SHIFT_1] + ((c >> SHIFT_2) & INDEX_2_MASK); | |||
} | |||
const block = this.index2[i2]; | |||
return block === this.dataNullOffset; | |||
} | |||
_allocIndex2Block() { | |||
const newBlock = this.index2Length; | |||
const newTop = newBlock + INDEX_2_BLOCK_LENGTH; | |||
if (newTop > this.index2.length) { | |||
// Should never occur. | |||
// Either MAX_BUILD_TIME_INDEX_LENGTH is incorrect, | |||
// or the code writes more values than should be possible. | |||
throw new Error("Internal error in Trie2 creation."); | |||
} | |||
this.index2Length = newTop; | |||
this.index2.set(this.index2.subarray(this.index2NullOffset, this.index2NullOffset + INDEX_2_BLOCK_LENGTH), newBlock); | |||
return newBlock; | |||
} | |||
_getIndex2Block(c, forLSCP) { | |||
if ((c >= 0xd800) && (c < 0xdc00) && forLSCP) { | |||
return LSCP_INDEX_2_OFFSET; | |||
} | |||
const i1 = c >> SHIFT_1; | |||
let i2 = this.index1[i1]; | |||
if (i2 === this.index2NullOffset) { | |||
i2 = this._allocIndex2Block(); | |||
this.index1[i1] = i2; | |||
} | |||
return i2; | |||
} | |||
_isWritableBlock(block) { | |||
return (block !== this.dataNullOffset) && (this.map[block >> SHIFT_2] === 1); | |||
} | |||
_allocDataBlock(copyBlock) { | |||
let newBlock; | |||
if (this.firstFreeBlock !== 0) { | |||
// get the first free block | |||
newBlock = this.firstFreeBlock; | |||
this.firstFreeBlock = -this.map[newBlock >> SHIFT_2]; | |||
} else { | |||
// get a new block from the high end | |||
newBlock = this.dataLength; | |||
const newTop = newBlock + DATA_BLOCK_LENGTH; | |||
if (newTop > this.dataCapacity) { | |||
// out of memory in the data array | |||
let capacity; | |||
if (this.dataCapacity < MEDIUM_DATA_LENGTH) { | |||
capacity = MEDIUM_DATA_LENGTH; | |||
} else if (this.dataCapacity < MAX_DATA_LENGTH_BUILDTIME) { | |||
capacity = MAX_DATA_LENGTH_BUILDTIME; | |||
} else { | |||
// Should never occur. | |||
// Either MAX_DATA_LENGTH_BUILDTIME is incorrect, | |||
// or the code writes more values than should be possible. | |||
throw new Error("Internal error in Trie2 creation."); | |||
} | |||
const newData = new Uint32Array(capacity); | |||
newData.set(this.data.subarray(0, this.dataLength)); | |||
this.data = newData; | |||
this.dataCapacity = capacity; | |||
} | |||
this.dataLength = newTop; | |||
} | |||
this.data.set(this.data.subarray(copyBlock, copyBlock + DATA_BLOCK_LENGTH), newBlock); | |||
this.map[newBlock >> SHIFT_2] = 0; | |||
return newBlock; | |||
} | |||
_releaseDataBlock(block) { | |||
// put this block at the front of the free-block chain | |||
this.map[block >> SHIFT_2] = -this.firstFreeBlock; | |||
this.firstFreeBlock = block; | |||
} | |||
_setIndex2Entry(i2, block) { | |||
++this.map[block >> SHIFT_2]; // increment first, in case block == oldBlock! | |||
const oldBlock = this.index2[i2]; | |||
if (--this.map[oldBlock >> SHIFT_2] === 0) { | |||
this._releaseDataBlock(oldBlock); | |||
} | |||
this.index2[i2] = block; | |||
} | |||
_getDataBlock(c, forLSCP) { | |||
let i2 = this._getIndex2Block(c, forLSCP); | |||
i2 += (c >> SHIFT_2) & INDEX_2_MASK; | |||
const oldBlock = this.index2[i2]; | |||
if (this._isWritableBlock(oldBlock)) { | |||
return oldBlock; | |||
} | |||
// allocate a new data block | |||
const newBlock = this._allocDataBlock(oldBlock); | |||
this._setIndex2Entry(i2, newBlock); | |||
return newBlock; | |||
} | |||
_fillBlock(block, start, limit, value, initialValue, overwrite) { | |||
let i; | |||
if (overwrite) { | |||
for (i = block + start; i < block + limit; i++) { | |||
this.data[i] = value; | |||
} | |||
} else { | |||
for (i = block + start; i < block + limit; i++) { | |||
if (this.data[i] === initialValue) { | |||
this.data[i] = value; | |||
} | |||
} | |||
} | |||
} | |||
_writeBlock(block, value) { | |||
const limit = block + DATA_BLOCK_LENGTH; | |||
while (block < limit) { | |||
this.data[block++] = value; | |||
} | |||
} | |||
_findHighStart(highValue) { | |||
let prevBlock, prevI2Block; | |||
const data32 = this.data; | |||
const { initialValue } = this; | |||
const { index2NullOffset } = this; | |||
const nullBlock = this.dataNullOffset; | |||
// set variables for previous range | |||
if (highValue === initialValue) { | |||
prevI2Block = index2NullOffset; | |||
prevBlock = nullBlock; | |||
} else { | |||
prevI2Block = -1; | |||
prevBlock = -1; | |||
} | |||
const prev = 0x110000; | |||
// enumerate index-2 blocks | |||
let i1 = INDEX_1_LENGTH; | |||
let c = prev; | |||
while (c > 0) { | |||
const i2Block = this.index1[--i1]; | |||
if (i2Block === prevI2Block) { | |||
// the index-2 block is the same as the previous one, and filled with highValue | |||
c -= CP_PER_INDEX_1_ENTRY; | |||
continue; | |||
} | |||
prevI2Block = i2Block; | |||
if (i2Block === index2NullOffset) { | |||
// this is the null index-2 block | |||
if (highValue !== initialValue) { | |||
return c; | |||
} | |||
c -= CP_PER_INDEX_1_ENTRY; | |||
} else { | |||
// enumerate data blocks for one index-2 block | |||
let i2 = INDEX_2_BLOCK_LENGTH; | |||
while (i2 > 0) { | |||
const block = this.index2[i2Block + --i2]; | |||
if (block === prevBlock) { | |||
// the block is the same as the previous one, and filled with highValue | |||
c -= DATA_BLOCK_LENGTH; | |||
continue; | |||
} | |||
prevBlock = block; | |||
if (block === nullBlock) { | |||
// this is the null data block | |||
if (highValue !== initialValue) { | |||
return c; | |||
} | |||
c -= DATA_BLOCK_LENGTH; | |||
} else { | |||
let j = DATA_BLOCK_LENGTH; | |||
while (j > 0) { | |||
const value = data32[block + --j]; | |||
if (value !== highValue) { | |||
return c; | |||
} | |||
--c; | |||
} | |||
} | |||
} | |||
} | |||
} | |||
// deliver last range | |||
return 0; | |||
} | |||
_findSameDataBlock(dataLength, otherBlock, blockLength) { | |||
// ensure that we do not even partially get past dataLength | |||
dataLength -= blockLength; | |||
let block = 0; | |||
while (block <= dataLength) { | |||
if (equal_int(this.data, block, otherBlock, blockLength)) { | |||
return block; | |||
} | |||
block += DATA_GRANULARITY; | |||
} | |||
return -1; | |||
} | |||
_findSameIndex2Block(index2Length, otherBlock) { | |||
// ensure that we do not even partially get past index2Length | |||
index2Length -= INDEX_2_BLOCK_LENGTH; | |||
for (let block = 0; block <= index2Length; block++) { | |||
if (equal_int(this.index2, block, otherBlock, INDEX_2_BLOCK_LENGTH)) { | |||
return block; | |||
} | |||
} | |||
return -1; | |||
} | |||
_compactData() { | |||
// do not compact linear-ASCII data | |||
let newStart = DATA_START_OFFSET; | |||
let start = 0; | |||
let i = 0; | |||
while (start < newStart) { | |||
this.map[i++] = start; | |||
start += DATA_BLOCK_LENGTH; | |||
} | |||
// Start with a block length of 64 for 2-byte UTF-8, | |||
// then switch to DATA_BLOCK_LENGTH. | |||
let blockLength = 64; | |||
let blockCount = blockLength >> SHIFT_2; | |||
start = newStart; | |||
while (start < this.dataLength) { | |||
// start: index of first entry of current block | |||
// newStart: index where the current block is to be moved | |||
// (right after current end of already-compacted data) | |||
var mapIndex, movedStart; | |||
if (start === DATA_0800_OFFSET) { | |||
blockLength = DATA_BLOCK_LENGTH; | |||
blockCount = 1; | |||
} | |||
// skip blocks that are not used | |||
if (this.map[start >> SHIFT_2] <= 0) { | |||
// advance start to the next block | |||
start += blockLength; | |||
// leave newStart with the previous block! | |||
continue; | |||
} | |||
// search for an identical block | |||
if ((movedStart = this._findSameDataBlock(newStart, start, blockLength)) >= 0) { | |||
// found an identical block, set the other block's index value for the current block | |||
mapIndex = start >> SHIFT_2; | |||
for (i = blockCount; i > 0; i--) { | |||
this.map[mapIndex++] = movedStart; | |||
movedStart += DATA_BLOCK_LENGTH; | |||
} | |||
// advance start to the next block | |||
start += blockLength; | |||
// leave newStart with the previous block! | |||
continue; | |||
} | |||
// see if the beginning of this block can be overlapped with the end of the previous block | |||
// look for maximum overlap (modulo granularity) with the previous, adjacent block | |||
let overlap = blockLength - DATA_GRANULARITY; | |||
while ((overlap > 0) && !equal_int(this.data, (newStart - overlap), start, overlap)) { | |||
overlap -= DATA_GRANULARITY; | |||
} | |||
if ((overlap > 0) || (newStart < start)) { | |||
// some overlap, or just move the whole block | |||
movedStart = newStart - overlap; | |||
mapIndex = start >> SHIFT_2; | |||
for (i = blockCount; i > 0; i--) { | |||
this.map[mapIndex++] = movedStart; | |||
movedStart += DATA_BLOCK_LENGTH; | |||
} | |||
// move the non-overlapping indexes to their new positions | |||
start += overlap; | |||
for (i = blockLength - overlap; i > 0; i--) { | |||
this.data[newStart++] = this.data[start++]; | |||
} | |||
} else { // no overlap && newStart==start | |||
mapIndex = start >> SHIFT_2; | |||
for (i = blockCount; i > 0; i--) { | |||
this.map[mapIndex++] = start; | |||
start += DATA_BLOCK_LENGTH; | |||
} | |||
newStart = start; | |||
} | |||
} | |||
// now adjust the index-2 table | |||
i = 0; | |||
while (i < this.index2Length) { | |||
// Gap indexes are invalid (-1). Skip over the gap. | |||
if (i === INDEX_GAP_OFFSET) { | |||
i += INDEX_GAP_LENGTH; | |||
} | |||
this.index2[i] = this.map[this.index2[i] >> SHIFT_2]; | |||
++i; | |||
} | |||
this.dataNullOffset = this.map[this.dataNullOffset >> SHIFT_2]; | |||
// ensure dataLength alignment | |||
while ((newStart & (DATA_GRANULARITY - 1)) !== 0) { | |||
this.data[newStart++] = this.initialValue; | |||
} | |||
this.dataLength = newStart; | |||
} | |||
_compactIndex2() { | |||
// do not compact linear-BMP index-2 blocks | |||
let newStart = INDEX_2_BMP_LENGTH; | |||
let start = 0; | |||
let i = 0; | |||
while (start < newStart) { | |||
this.map[i++] = start; | |||
start += INDEX_2_BLOCK_LENGTH; | |||
} | |||
// Reduce the index table gap to what will be needed at runtime. | |||
newStart += UTF8_2B_INDEX_2_LENGTH + ((this.highStart - 0x10000) >> SHIFT_1); | |||
start = INDEX_2_NULL_OFFSET; | |||
while (start < this.index2Length) { | |||
// start: index of first entry of current block | |||
// newStart: index where the current block is to be moved | |||
// (right after current end of already-compacted data) | |||
// search for an identical block | |||
var movedStart; | |||
if ((movedStart = this._findSameIndex2Block(newStart, start)) >= 0) { | |||
// found an identical block, set the other block's index value for the current block | |||
this.map[start >> SHIFT_1_2] = movedStart; | |||
// advance start to the next block | |||
start += INDEX_2_BLOCK_LENGTH; | |||
// leave newStart with the previous block! | |||
continue; | |||
} | |||
// see if the beginning of this block can be overlapped with the end of the previous block | |||
// look for maximum overlap with the previous, adjacent block | |||
let overlap = INDEX_2_BLOCK_LENGTH - 1; | |||
while ((overlap > 0) && !equal_int(this.index2, (newStart - overlap), start, overlap)) { | |||
--overlap; | |||
} | |||
if ((overlap > 0) || (newStart < start)) { | |||
// some overlap, or just move the whole block | |||
this.map[start >> SHIFT_1_2] = newStart - overlap; | |||
// move the non-overlapping indexes to their new positions | |||
start += overlap; | |||
for (i = INDEX_2_BLOCK_LENGTH - overlap; i > 0; i--) { | |||
this.index2[newStart++] = this.index2[start++]; | |||
} | |||
} else { // no overlap && newStart==start | |||
this.map[start >> SHIFT_1_2] = start; | |||
start += INDEX_2_BLOCK_LENGTH; | |||
newStart = start; | |||
} | |||
} | |||
// now adjust the index-1 table | |||
for (i = 0; i < INDEX_1_LENGTH; i++) { | |||
this.index1[i] = this.map[this.index1[i] >> SHIFT_1_2]; | |||
} | |||
this.index2NullOffset = this.map[this.index2NullOffset >> SHIFT_1_2]; | |||
// Ensure data table alignment: | |||
// Needs to be granularity-aligned for 16-bit trie | |||
// (so that dataMove will be down-shiftable), | |||
// and 2-aligned for uint32_t data. | |||
// Arbitrary value: 0x3fffc not possible for real data. | |||
while ((newStart & ((DATA_GRANULARITY - 1) | 1)) !== 0) { | |||
this.index2[newStart++] = 0x0000ffff << INDEX_SHIFT; | |||
} | |||
this.index2Length = newStart; | |||
} | |||
_compact() { | |||
// find highStart and round it up | |||
let highValue = this.get(0x10ffff); | |||
let highStart = this._findHighStart(highValue); | |||
highStart = (highStart + (CP_PER_INDEX_1_ENTRY - 1)) & ~(CP_PER_INDEX_1_ENTRY - 1); | |||
if (highStart === 0x110000) { | |||
highValue = this.errorValue; | |||
} | |||
// Set trie->highStart only after utrie2_get32(trie, highStart). | |||
// Otherwise utrie2_get32(trie, highStart) would try to read the highValue. | |||
this.highStart = highStart; | |||
if (this.highStart < 0x110000) { | |||
// Blank out [highStart..10ffff] to release associated data blocks. | |||
const suppHighStart = this.highStart <= 0x10000 ? 0x10000 : this.highStart; | |||
this.setRange(suppHighStart, 0x10ffff, this.initialValue, true); | |||
} | |||
this._compactData(); | |||
if (this.highStart > 0x10000) { | |||
this._compactIndex2(); | |||
} | |||
// Store the highValue in the data array and round up the dataLength. | |||
// Must be done after compactData() because that assumes that dataLength | |||
// is a multiple of DATA_BLOCK_LENGTH. | |||
this.data[this.dataLength++] = highValue; | |||
while ((this.dataLength & (DATA_GRANULARITY - 1)) !== 0) { | |||
this.data[this.dataLength++] = this.initialValue; | |||
} | |||
this.isCompacted = true; | |||
} | |||
freeze() { | |||
let allIndexesLength, i; | |||
if (!this.isCompacted) { | |||
this._compact(); | |||
} | |||
if (this.highStart <= 0x10000) { | |||
allIndexesLength = INDEX_1_OFFSET; | |||
} else { | |||
allIndexesLength = this.index2Length; | |||
} | |||
const dataMove = allIndexesLength; | |||
// are indexLength and dataLength within limits? | |||
if ((allIndexesLength > MAX_INDEX_LENGTH) || // for unshifted indexLength | |||
((dataMove + this.dataNullOffset) > 0xffff) || // for unshifted dataNullOffset | |||
((dataMove + DATA_0800_OFFSET) > 0xffff) || // for unshifted 2-byte UTF-8 index-2 values | |||
((dataMove + this.dataLength) > MAX_DATA_LENGTH_RUNTIME)) { // for shiftedDataLength | |||
throw new Error("Trie data is too large."); | |||
} | |||
// calculate the sizes of, and allocate, the index and data arrays | |||
const indexLength = allIndexesLength + this.dataLength; | |||
const data = new Int32Array(indexLength); | |||
// write the index-2 array values shifted right by INDEX_SHIFT, after adding dataMove | |||
let destIdx = 0; | |||
for (i = 0; i < INDEX_2_BMP_LENGTH; i++) { | |||
data[destIdx++] = ((this.index2[i] + dataMove) >> INDEX_SHIFT); | |||
} | |||
// write UTF-8 2-byte index-2 values, not right-shifted | |||
for (i = 0; i < 0xc2 - 0xc0; i++) { // C0..C1 | |||
data[destIdx++] = (dataMove + BAD_UTF8_DATA_OFFSET); | |||
} | |||
for (i = i; i < 0xe0 - 0xc0; i++) { // C2..DF | |||
data[destIdx++] = (dataMove + this.index2[i << (6 - SHIFT_2)]); | |||
} | |||
if (this.highStart > 0x10000) { | |||
const index1Length = (this.highStart - 0x10000) >> SHIFT_1; | |||
const index2Offset = INDEX_2_BMP_LENGTH + UTF8_2B_INDEX_2_LENGTH + index1Length; | |||
// write 16-bit index-1 values for supplementary code points | |||
for (i = 0; i < index1Length; i++) { | |||
data[destIdx++] = (INDEX_2_OFFSET + this.index1[i + OMITTED_BMP_INDEX_1_LENGTH]); | |||
} | |||
// write the index-2 array values for supplementary code points, | |||
// shifted right by INDEX_SHIFT, after adding dataMove | |||
for (i = 0; i < this.index2Length - index2Offset; i++) { | |||
data[destIdx++] = ((dataMove + this.index2[index2Offset + i]) >> INDEX_SHIFT); | |||
} | |||
} | |||
// write 16-bit data values | |||
for (i = 0; i < this.dataLength; i++) { | |||
data[destIdx++] = this.data[i]; | |||
} | |||
const dest = new UnicodeTrie({ | |||
data, | |||
highStart: this.highStart, | |||
errorValue: this.errorValue | |||
}); | |||
return dest; | |||
} | |||
// Generates a Buffer containing the serialized and compressed trie. | |||
// Trie data is compressed twice using the deflate algorithm to minimize file size. | |||
// Format: | |||
// uint32_t highStart; | |||
// uint32_t errorValue; | |||
// uint32_t uncompressedDataLength; | |||
// uint8_t trieData[dataLength]; | |||
toBuffer() { | |||
const trie = this.freeze(); | |||
const data = new Uint8Array(trie.data.buffer); | |||
let compressed = pako.deflateRaw(data); | |||
compressed = pako.deflateRaw(compressed); | |||
const buf = new Buffer(compressed.length + 12); | |||
buf.writeUInt32BE(trie.highStart, 0); | |||
buf.writeUInt32BE(trie.errorValue, 4); | |||
buf.writeUInt32BE(data.length, 8); | |||
for (let i = 0; i < compressed.length; i++) { | |||
const b = compressed[i]; | |||
buf[i + 12] = b; | |||
} | |||
return buf; | |||
} | |||
} | |||
module.exports = UnicodeTrieBuilder; |