Show More
Commit Description:
Merge pull request #17 from nattee/master...
Commit Description:
Merge pull request #17 from nattee/master
upgrade to current working snapshot
References:
File last commit:
Show/Diff file:
Action:
lib/assets/libs/math.js
| 468 lines
| 18.9 KiB
| application/javascript
| JavascriptLexer
|
r584 | var $module=(function($B){ | |||
var _b_ = $B.builtins | ||||
var $s=[] | ||||
for(var $b in _b_) $s.push('var ' + $b +'=_b_["'+$b+'"]') | ||||
eval($s.join(';')) | ||||
//for(var $py_builtin in _b_){eval("var "+$py_builtin+"=_b_[$py_builtin]")} | ||||
var float_check=function(x) { | ||||
if (x.__class__===$B.LongInt.$dict){return parseInt(x.value)} | ||||
return x | ||||
} | ||||
var isWholeNumber=function(x){return (x*10) % 10 == 0} | ||||
var isOdd=function(x) {return isWholeNumber(x) && 2*Math.floor(x/2) != x} | ||||
var isLargeNumber=function(x) {return x > Math.pow(2,32)} | ||||
// Big number Library from jsfromhell.com | ||||
// This library helps with producing "correct" results from | ||||
// mathematic operations | ||||
//+ Jonas Raoni Soares Silva | ||||
//@ http://jsfromhell.com/classes/bignumber [rev. #4] | ||||
var BigNumber = function(n, p, r){ | ||||
var o = this, i; | ||||
if(n instanceof BigNumber){ | ||||
for(i in {precision: 0, roundType: 0, _s: 0, _f: 0}) o[i] = n[i]; | ||||
o._d = n._d.slice(); | ||||
return; | ||||
} | ||||
o.precision = isNaN(p = Math.abs(p)) ? BigNumber.defaultPrecision : p; | ||||
o.roundType = isNaN(r = Math.abs(r)) ? BigNumber.defaultRoundType : r; | ||||
o._s = (n += "").charAt(0) == "-"; | ||||
o._f = ((n = n.replace(/[^\d.]/g, "").split(".", 2))[0] = n[0].replace(/^0+/, "") || "0").length; | ||||
for(i = (n = o._d = (n.join("") || "0").split("")).length; i; n[--i] = +n[i]); | ||||
o.round(); | ||||
}; | ||||
with({$: BigNumber, o: BigNumber.prototype}){ | ||||
$.ROUND_HALF_EVEN = ($.ROUND_HALF_DOWN = ($.ROUND_HALF_UP = ($.ROUND_FLOOR = ($.ROUND_CEIL = ($.ROUND_DOWN = ($.ROUND_UP = 0) + 1) + 1) + 1) + 1) + 1) + 1; | ||||
$.defaultPrecision = 40; | ||||
$.defaultRoundType = $.ROUND_HALF_UP; | ||||
o.add = function(n){ | ||||
if(this._s != (n = new BigNumber(n))._s) | ||||
return n._s ^= 1, this.subtract(n); | ||||
var o = new BigNumber(this), a = o._d, b = n._d, la = o._f, | ||||
lb = n._f, n = Math.max(la, lb), i, r; | ||||
la != lb && ((lb = la - lb) > 0 ? o._zeroes(b, lb, 1) : o._zeroes(a, -lb, 1)); | ||||
i = (la = a.length) == (lb = b.length) ? a.length : ((lb = la - lb) > 0 ? o._zeroes(b, lb) : o._zeroes(a, -lb)).length; | ||||
for(r = 0; i; r = (a[--i] = a[i] + b[i] + r) / 10 >>> 0, a[i] %= 10); | ||||
return r && ++n && a.unshift(r), o._f = n, o.round(); | ||||
}; | ||||
o.subtract = function(n){ | ||||
if(this._s != (n = new BigNumber(n))._s) | ||||
return n._s ^= 1, this.add(n); | ||||
var o = new BigNumber(this), c = o.abs().compare(n.abs()) + 1, a = c ? o : n, b = c ? n : o, la = a._f, lb = b._f, d = la, i, j; | ||||
a = a._d, b = b._d, la != lb && ((lb = la - lb) > 0 ? o._zeroes(b, lb, 1) : o._zeroes(a, -lb, 1)); | ||||
for(i = (la = a.length) == (lb = b.length) ? a.length : ((lb = la - lb) > 0 ? o._zeroes(b, lb) : o._zeroes(a, -lb)).length; i;){ | ||||
if(a[--i] < b[i]){ | ||||
for(j = i; j && !a[--j]; a[j] = 9); | ||||
--a[j], a[i] += 10; | ||||
} | ||||
b[i] = a[i] - b[i]; | ||||
} | ||||
return c || (o._s ^= 1), o._f = d, o._d = b, o.round(); | ||||
}; | ||||
o.multiply = function(n){ | ||||
var o = new BigNumber(this), r = o._d.length >= (n = new BigNumber(n))._d.length, a = (r ? o : n)._d, | ||||
b = (r ? n : o)._d, la = a.length, lb = b.length, x = new BigNumber, i, j, s; | ||||
for(i = lb; i; r && s.unshift(r), x.set(x.add(new BigNumber(s.join(""))))) | ||||
for(s = (new Array(lb - --i)).join("0").split(""), r = 0, j = la; j; r += a[--j] * b[i], s.unshift(r % 10), r = (r / 10) >>> 0); | ||||
return o._s = o._s != n._s, o._f = ((r = la + lb - o._f - n._f) >= (j = (o._d = x._d).length) ? this._zeroes(o._d, r - j + 1, 1).length : j) - r, o.round(); | ||||
}; | ||||
o.divide = function(n){ | ||||
if((n = new BigNumber(n)) == "0") | ||||
throw new Error("Division by 0"); | ||||
else if(this == "0") | ||||
return new BigNumber; | ||||
var o = new BigNumber(this), a = o._d, b = n._d, la = a.length - o._f, | ||||
lb = b.length - n._f, r = new BigNumber, i = 0, j, s, l, f = 1, c = 0, e = 0; | ||||
r._s = o._s != n._s, r.precision = Math.max(o.precision, n.precision), | ||||
r._f = +r._d.pop(), la != lb && o._zeroes(la > lb ? b : a, Math.abs(la - lb)); | ||||
n._f = b.length, b = n, b._s = false, b = b.round(); | ||||
for(n = new BigNumber; a[0] == "0"; a.shift()); | ||||
out: | ||||
do{ | ||||
for(l = c = 0, n == "0" && (n._d = [], n._f = 0); i < a.length && n.compare(b) == -1; ++i){ | ||||
(l = i + 1 == a.length, (!f && ++c > 1 || (e = l && n == "0" && a[i] == "0"))) | ||||
&& (r._f == r._d.length && ++r._f, r._d.push(0)); | ||||
(a[i] == "0" && n == "0") || (n._d.push(a[i]), ++n._f); | ||||
if(e) | ||||
break out; | ||||
if((l && n.compare(b) == -1 && (r._f == r._d.length && ++r._f, 1)) || (l = 0)) | ||||
while(r._d.push(0), n._d.push(0), ++n._f, n.compare(b) == -1); | ||||
} | ||||
if(f = 0, n.compare(b) == -1 && !(l = 0)) | ||||
while(l ? r._d.push(0) : l = 1, n._d.push(0), ++n._f, n.compare(b) == -1); | ||||
for(s = new BigNumber, j = 0; n.compare(y = s.add(b)) + 1 && ++j; s.set(y)); | ||||
n.set(n.subtract(s)), !l && r._f == r._d.length && ++r._f, r._d.push(j); | ||||
} | ||||
while((i < a.length || n != "0") && (r._d.length - r._f) <= r.precision); | ||||
return r.round(); | ||||
}; | ||||
o.mod = function(n){ | ||||
return this.subtract(this.divide(n).intPart().multiply(n)); | ||||
}; | ||||
o.pow = function(n){ | ||||
var o = new BigNumber(this), i; | ||||
if((n = (new BigNumber(n)).intPart()) == 0) return o.set(1); | ||||
for(i = Math.abs(n); --i; o.set(o.multiply(this))); | ||||
return n < 0 ? o.set((new BigNumber(1)).divide(o)) : o; | ||||
}; | ||||
o.set = function(n){ | ||||
return this.constructor(n), this; | ||||
}; | ||||
o.compare = function(n){ | ||||
var a = this, la = this._f, b = new BigNumber(n), lb = b._f, r = [-1, 1], i, l; | ||||
if(a._s != b._s) | ||||
return a._s ? -1 : 1; | ||||
if(la != lb) | ||||
return r[(la > lb) ^ a._s]; | ||||
for(la = (a = a._d).length, lb = (b = b._d).length, i = -1, l = Math.min(la, lb); ++i < l;) | ||||
if(a[i] != b[i]) | ||||
return r[(a[i] > b[i]) ^ a._s]; | ||||
return la != lb ? r[(la > lb) ^ a._s] : 0; | ||||
}; | ||||
o.negate = function(){ | ||||
var n = new BigNumber(this); return n._s ^= 1, n; | ||||
}; | ||||
o.abs = function(){ | ||||
var n = new BigNumber(this); return n._s = 0, n; | ||||
}; | ||||
o.intPart = function(){ | ||||
return new BigNumber((this._s ? "-" : "") + (this._d.slice(0, this._f).join("") || "0")); | ||||
}; | ||||
o.valueOf = o.toString = function(){ | ||||
var o = this; | ||||
return (o._s ? "-" : "") + (o._d.slice(0, o._f).join("") || "0") + (o._f != o._d.length ? "." + o._d.slice(o._f).join("") : ""); | ||||
}; | ||||
o._zeroes = function(n, l, t){ | ||||
var s = ["push", "unshift"][t || 0]; | ||||
for(++l; --l; n[s](0)); | ||||
return n; | ||||
}; | ||||
o.round = function(){ | ||||
if("_rounding" in this) return this; | ||||
var $ = BigNumber, r = this.roundType, b = this._d, d, p, n, x; | ||||
for(this._rounding = true; this._f > 1 && !b[0]; --this._f, b.shift()); | ||||
for(d = this._f, p = this.precision + d, n = b[p]; b.length > d && !b[b.length -1]; b.pop()); | ||||
x = (this._s ? "-" : "") + (p - d ? "0." + this._zeroes([], p - d - 1).join("") : "") + 1; | ||||
if(b.length > p){ | ||||
n && (r == $.DOWN ? false : r == $.UP ? true : r == $.CEIL ? !this._s | ||||
: r == $.FLOOR ? this._s : r == $.HALF_UP ? n >= 5 : r == $.HALF_DOWN ? n > 5 | ||||
: r == $.HALF_EVEN ? n >= 5 && b[p - 1] & 1 : false) && this.add(x); | ||||
b.splice(p, b.length - p); | ||||
} | ||||
return delete this._rounding, this; | ||||
}; | ||||
} | ||||
var isNegZero=function(x) {return x===0 && Math.atan2(x,x) < 0} | ||||
var _mod = { | ||||
__getattr__ : function(attr){ | ||||
var res = this[attr] | ||||
if(res===undefined){$raise('AttributeError','module math has no attribute '+attr)} | ||||
return res | ||||
}, | ||||
acos: function(x) {return float(Math.acos(float_check(x)))}, | ||||
acosh: function(x) { | ||||
if (_b_.$isinf(x)) return float('inf'); | ||||
var y = float_check(x); | ||||
return float(Math.log(y + Math.sqrt(y*y-1))); | ||||
}, | ||||
asin: function(x) {return float(Math.asin(float_check(x)))}, | ||||
asinh: function(x) { | ||||
if (_b_.$isninf(x)) return float('-inf'); | ||||
if (_b_.$isinf(x)) return float('inf'); | ||||
var y = float_check(x); | ||||
return float(Math.log(y + Math.sqrt(y*y+1))) | ||||
}, | ||||
atan: function(x) { | ||||
if (_b_.$isninf(x)) return float(-Math.PI/2); | ||||
if (_b_.$isinf(x)) return float(Math.PI/2); | ||||
return float(Math.atan(float_check(x)))}, | ||||
atan2: function(y,x) { | ||||
return float(Math.atan2(float_check(y),float_check(x))) | ||||
}, | ||||
atanh: function(x) { | ||||
var y=float_check(x); | ||||
if (y==0) return 0; | ||||
return float(0.5 * Math.log((1/y+1)/(1/y-1))); | ||||
}, | ||||
ceil: function(x) { | ||||
try{return getattr(x,'__ceil__')()}catch(err){} | ||||
if (_b_.$isninf(x)) return float('-inf') | ||||
if (_b_.$isinf(x)) return float('inf') | ||||
if (isNaN(x)) return float('nan') | ||||
var y=float_check(x); | ||||
if (!isNaN(parseFloat(y)) && isFinite(y)) return int(Math.ceil(y)); | ||||
$raise('ValueError', 'object is not a number and does not contain __ceil__') | ||||
}, | ||||
copysign: function(x,y) { | ||||
var x1=Math.abs(float_check(x)) | ||||
var y1=float_check(y) | ||||
var sign=y1?y1<0?-1:1:1 | ||||
if (isNegZero(y1)) sign=-1 // probably need to work on adding a check for -0 | ||||
return float(x1 * sign) | ||||
}, | ||||
cos : function(x){return float(Math.cos(float_check(x)))}, | ||||
cosh: function(x){ | ||||
if (_b_.$isinf(x)) return float('inf') | ||||
var y = float_check(x) | ||||
if (Math.cosh !== undefined) return float(Math.cosh(y)) | ||||
return float((Math.pow(Math.E,y) + Math.pow(Math.E,-y))/2) | ||||
}, | ||||
degrees: function(x){return float(float_check(x) * 180/Math.PI)}, | ||||
e: float(Math.E), | ||||
erf: function(x) { | ||||
// inspired from | ||||
// http://stackoverflow.com/questions/457408/is-there-an-easily-available-implementation-of-erf-for-python | ||||
var y =float_check(x); | ||||
var t = 1.0 / (1.0 + 0.5 * Math.abs(y)) | ||||
var ans = 1 - t * Math.exp( -y*y - 1.26551223 + | ||||
t * ( 1.00002368 + | ||||
t * ( 0.37409196 + | ||||
t * ( 0.09678418 + | ||||
t * (-0.18628806 + | ||||
t * ( 0.27886807 + | ||||
t * (-1.13520398 + | ||||
t * ( 1.48851587 + | ||||
t * (-0.82215223 + | ||||
t * 0.17087277))))))))) | ||||
if (y >= 0.0) return ans | ||||
return -ans | ||||
}, | ||||
erfc: function(x) { | ||||
// inspired from | ||||
// http://stackoverflow.com/questions/457408/is-there-an-easily-available-implementation-of-erf-for-python | ||||
var y = float_check(x); | ||||
var t = 1.0 / (1.0 + 0.5 * Math.abs(y)) | ||||
var ans = 1 - t * Math.exp( -y*y - 1.26551223 + | ||||
t * ( 1.00002368 + | ||||
t * ( 0.37409196 + | ||||
t * ( 0.09678418 + | ||||
t * (-0.18628806 + | ||||
t * ( 0.27886807 + | ||||
t * (-1.13520398 + | ||||
t * ( 1.48851587 + | ||||
t * (-0.82215223 + | ||||
t * 0.17087277))))))))) | ||||
if (y >= 0.0) return 1-ans | ||||
return 1+ans | ||||
}, | ||||
exp: function(x){ | ||||
if (_b_.$isninf(x)) {return float(0)} | ||||
if (_b_.$isinf(x)) {return float('inf')} | ||||
var _r=Math.exp(float_check(x)) | ||||
if (_b_.$isinf(_r)) {throw OverflowError("math range error")} | ||||
return float(_r) | ||||
}, | ||||
expm1: function(x){return float(Math.exp(float_check(x))-1)}, | ||||
//fabs: function(x){ return x>0?float(x):float(-x)}, | ||||
fabs: function(x){return _b_.$fabs(x)}, //located in py_float.js | ||||
factorial: function(x) { | ||||
//using code from http://stackoverflow.com/questions/3959211/fast-factorial-function-in-javascript | ||||
var y=float_check(x); | ||||
var r=1 | ||||
for (var i=2; i<=y; i++){r*=i} | ||||
return r | ||||
}, | ||||
floor:function(x){return Math.floor(float_check(x))}, | ||||
fmod:function(x,y){return float(float_check(x)%float_check(y))}, | ||||
frexp: function(x){var _l=_b_.$frexp(x);return _b_.tuple([float(_l[0]), _l[1]])}, // located in py_float.js | ||||
fsum:function(x){ | ||||
var res = new Number(), _it = _b_.iter(x) | ||||
while(true){ | ||||
try{ | ||||
var item = _b_.next(_it) | ||||
res += new Number(item) | ||||
}catch(err){ | ||||
if(_b_.isinstance(err, _b_.StopIteration)){break} | ||||
throw err | ||||
} | ||||
} | ||||
return res | ||||
}, | ||||
gamma: function(x){ | ||||
//using code from http://stackoverflow.com/questions/3959211/fast-factorial-function-in-javascript | ||||
// Lanczos Approximation of the Gamma Function | ||||
// As described in Numerical Recipes in C (2nd ed. Cambridge University Press, 1992) | ||||
var y=float_check(x); | ||||
var z = y + 1; | ||||
var d1 = Math.sqrt(2 * Math.PI) / z; | ||||
var d2 = 1.000000000190015; | ||||
d2 += 76.18009172947146 / (z+1); | ||||
d2 += -86.50532032941677 / (z+2); | ||||
d2 += 24.01409824083091 / (z+3); | ||||
d2 += -1.231739572450155 / (z+4); | ||||
d2 += 1.208650973866179E-3 / (z+5); | ||||
d2 += -5.395239384953E-6 / (z+6); | ||||
return d1 * d2 * Math.pow(z+5.5,z+0.5) * Math.exp(-(z+5.5)); | ||||
}, | ||||
hypot: function(x,y){ | ||||
if (_b_.$isinf(x) || _b_.$isinf(y)) return float('inf') | ||||
var x1=float_check(x); | ||||
var y1=float_check(y); | ||||
return float(Math.sqrt(x1*x1 + y1*y1))}, | ||||
isfinite:function(x) {return isFinite(float_check(x))}, | ||||
isinf:function(x) {return _b_.$isinf(float_check(x))}, | ||||
isnan:function(x) {return isNaN(float_check(x))}, | ||||
ldexp:function(x,i) {return _b_.$ldexp(x,i)}, //located in py_float.js | ||||
lgamma:function(x) { | ||||
// see gamma function for sources | ||||
var y=float_check(x); | ||||
var z = y + 1; | ||||
var d1 = Math.sqrt(2 * Math.PI) / z; | ||||
var d2 = 1.000000000190015; | ||||
d2 += 76.18009172947146 / (z+1); | ||||
d2 += -86.50532032941677 / (z+2); | ||||
d2 += 24.01409824083091 / (z+3); | ||||
d2 += -1.231739572450155 / (z+4); | ||||
d2 += 1.208650973866179E-3 / (z+5); | ||||
d2 += -5.395239384953E-6 / (z+6); | ||||
return float(Math.log(Math.abs(d1 * d2 * Math.pow(z+5.5,z+0.5) * Math.exp(-(z+5.5))))); | ||||
}, | ||||
log: function(x, base) { | ||||
var x1=float_check(x); | ||||
if (base === undefined) return float(Math.log(x1)); | ||||
return float(Math.log(x1)/Math.log(float_check(base))); | ||||
}, | ||||
log1p: function(x) {return float(Math.log(1.0 + float_check(x)))}, | ||||
log2: function(x) { | ||||
if (isNaN(x)) return float('nan') | ||||
if (_b_.$isninf(x)) throw ValueError('') | ||||
var x1=float_check(x) | ||||
if (x1 < 0.0) throw ValueError('') | ||||
//if (isLargeNumber(x1)) x1=new BigNumber(x1) | ||||
return float(Math.log(x1)/Math.LN2) | ||||
}, | ||||
log10: function(x) {return float(Math.log(float_check(x))/Math.LN10)}, | ||||
modf:function(x) { | ||||
if (_b_.$isninf(x)) return _b_.tuple([0.0, float('-inf')]) | ||||
if (_b_.$isinf(x)) return _b_.tuple([0.0, float('inf')]) | ||||
if (isNaN(x)) return _b_.tuple([float('nan'), float('nan')]) | ||||
var x1=float_check(x); | ||||
if (x1 > 0) { | ||||
var i=float(x1-Math.floor(x1)) | ||||
return _b_.tuple([i, float(x1-i)]) | ||||
} | ||||
var x2=Math.ceil(x1) | ||||
var i=float(x1-x2) | ||||
return _b_.tuple([i, float(x2)]) | ||||
}, | ||||
pi : float(Math.PI), | ||||
pow: function(x,y) { | ||||
var x1=float_check(x) | ||||
var y1=float_check(y) | ||||
if (y1 == 0) return float(1) | ||||
if (x1 == 0 && y1 < 0) throw _b_.ValueError('') | ||||
if(isNaN(y1)) {if(x1==1) return float(1) | ||||
return float('nan') | ||||
} | ||||
if (x1 == 0) return float(0) | ||||
if(_b_.$isninf(y)) {if(x1==1||x1==-1) {return float(1)} | ||||
if(x1 < 1 && x1 > -1) return float('inf') | ||||
return float(0) | ||||
} | ||||
if(_b_.$isinf(y)) {if(x1==1||x1==-1) {return float(1)} | ||||
if(x1 < 1 && x1 > -1) return float(0) | ||||
return float('inf')} | ||||
if(isNaN(x1)) return float('nan') | ||||
if(_b_.$isninf(x)) { | ||||
if (y1 > 0 && isOdd(y1)) return float('-inf') | ||||
if (y1 > 0) return float('inf') // this is even or a float | ||||
if (y1 < 0) return float(0) | ||||
return float(1) | ||||
} | ||||
if(_b_.$isinf(x)) { | ||||
if (y1 > 0) return float('inf') | ||||
if (y1 < 0) return float(0) | ||||
return float(1) | ||||
} | ||||
var r | ||||
if (isLargeNumber(x1) || isLargeNumber(y1)) { | ||||
var x=new BigNumber(x1) | ||||
var y=new BigNumber(y1) | ||||
r=x.pow(y) | ||||
} else { | ||||
r=Math.pow(x1,y1) | ||||
} | ||||
if (isNaN(r)) return float('nan') | ||||
if (_b_.$isninf(r)) return float('-inf') | ||||
if (_b_.$isinf(r)) return float('inf') | ||||
return r | ||||
}, | ||||
radians: function(x){return float(float_check(x) * Math.PI/180)}, | ||||
sin : function(x){return float(Math.sin(float_check(x)))}, | ||||
sinh: function(x) { | ||||
//if (_b_.$isinf(x)) return float('inf'); | ||||
var y = float_check(x) | ||||
if (Math.sinh !== undefined) { return float(Math.sinh(y))} | ||||
return float((Math.pow(Math.E,y) - Math.pow(Math.E,-y))/2) | ||||
}, | ||||
sqrt : function(x){ | ||||
var y = float_check(x) | ||||
if (y < 0) { throw ValueError("math range error")} | ||||
if (_b_.$isinf(y)) return float('inf') | ||||
var _r=Math.sqrt(y) | ||||
if (_b_.$isinf(_r)) {throw OverflowError("math range error")} | ||||
return float(_r) | ||||
}, | ||||
tan: function(x) { | ||||
var y = float_check(x) | ||||
return float(Math.tan(y)) | ||||
}, | ||||
tanh: function(x) { | ||||
var y = float_check(x) | ||||
if (Math.tanh !== undefined) return float(Math.tanh(y)) | ||||
return float((Math.pow(Math.E,y) - Math.pow(Math.E,-y))/ | ||||
(Math.pow(Math.E,y) + Math.pow(Math.E,-y))) | ||||
}, | ||||
trunc: function(x) { | ||||
try{return getattr(x,'__trunc__')()}catch(err){} | ||||
var x1=float_check(x); | ||||
if (!isNaN(parseFloat(x1)) && isFinite(x1)) { | ||||
if (Math.trunc !== undefined) { return int(Math.trunc(x1))} | ||||
if (x1 > 0) {return int(Math.floor(x1))} | ||||
return int(Math.ceil(x1)) // x1 < 0 | ||||
} | ||||
$raise('ValueError', 'object is not a number and does not contain __trunc__') | ||||
} | ||||
} | ||||
for(var $attr in _mod){ | ||||
if(typeof _mod[$attr]==='function'){ | ||||
_mod[$attr].__repr__=(function(func){ | ||||
return function(){return '<built-in function '+func+'>'}})($attr) | ||||
_mod[$attr].__str__=(function(func){ | ||||
return function(){return '<built-in function '+func+'>'}})($attr) | ||||
} | ||||
} | ||||
return _mod | ||||
})(__BRYTHON__) | ||||