Show More
Commit Description:
fix wrong merge
Commit Description:
fix wrong merge
References:
File last commit:
Show/Diff file:
Action:
node_modules/pako/lib/zlib/trees.js
| 1202 lines
| 38.0 KiB
| application/javascript
| JavascriptLexer
|
r789 | 'use strict'; | |||
var utils = require('../utils/common'); | ||||
/* Public constants ==========================================================*/ | ||||
/* ===========================================================================*/ | ||||
//var Z_FILTERED = 1; | ||||
//var Z_HUFFMAN_ONLY = 2; | ||||
//var Z_RLE = 3; | ||||
var Z_FIXED = 4; | ||||
//var Z_DEFAULT_STRATEGY = 0; | ||||
/* Possible values of the data_type field (though see inflate()) */ | ||||
var Z_BINARY = 0; | ||||
var Z_TEXT = 1; | ||||
//var Z_ASCII = 1; // = Z_TEXT | ||||
var Z_UNKNOWN = 2; | ||||
/*============================================================================*/ | ||||
function zero(buf) { var len = buf.length; while (--len >= 0) { buf[len] = 0; } } | ||||
// From zutil.h | ||||
var STORED_BLOCK = 0; | ||||
var STATIC_TREES = 1; | ||||
var DYN_TREES = 2; | ||||
/* The three kinds of block type */ | ||||
var MIN_MATCH = 3; | ||||
var MAX_MATCH = 258; | ||||
/* The minimum and maximum match lengths */ | ||||
// From deflate.h | ||||
/* =========================================================================== | ||||
* Internal compression state. | ||||
*/ | ||||
var LENGTH_CODES = 29; | ||||
/* number of length codes, not counting the special END_BLOCK code */ | ||||
var LITERALS = 256; | ||||
/* number of literal bytes 0..255 */ | ||||
var L_CODES = LITERALS + 1 + LENGTH_CODES; | ||||
/* number of Literal or Length codes, including the END_BLOCK code */ | ||||
var D_CODES = 30; | ||||
/* number of distance codes */ | ||||
var BL_CODES = 19; | ||||
/* number of codes used to transfer the bit lengths */ | ||||
var HEAP_SIZE = 2 * L_CODES + 1; | ||||
/* maximum heap size */ | ||||
var MAX_BITS = 15; | ||||
/* All codes must not exceed MAX_BITS bits */ | ||||
var Buf_size = 16; | ||||
/* size of bit buffer in bi_buf */ | ||||
/* =========================================================================== | ||||
* Constants | ||||
*/ | ||||
var MAX_BL_BITS = 7; | ||||
/* Bit length codes must not exceed MAX_BL_BITS bits */ | ||||
var END_BLOCK = 256; | ||||
/* end of block literal code */ | ||||
var REP_3_6 = 16; | ||||
/* repeat previous bit length 3-6 times (2 bits of repeat count) */ | ||||
var REPZ_3_10 = 17; | ||||
/* repeat a zero length 3-10 times (3 bits of repeat count) */ | ||||
var REPZ_11_138 = 18; | ||||
/* repeat a zero length 11-138 times (7 bits of repeat count) */ | ||||
/* eslint-disable comma-spacing,array-bracket-spacing */ | ||||
var extra_lbits = /* extra bits for each length code */ | ||||
[0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0]; | ||||
var extra_dbits = /* extra bits for each distance code */ | ||||
[0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13]; | ||||
var extra_blbits = /* extra bits for each bit length code */ | ||||
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7]; | ||||
var bl_order = | ||||
[16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15]; | ||||
/* eslint-enable comma-spacing,array-bracket-spacing */ | ||||
/* The lengths of the bit length codes are sent in order of decreasing | ||||
* probability, to avoid transmitting the lengths for unused bit length codes. | ||||
*/ | ||||
/* =========================================================================== | ||||
* Local data. These are initialized only once. | ||||
*/ | ||||
// We pre-fill arrays with 0 to avoid uninitialized gaps | ||||
var DIST_CODE_LEN = 512; /* see definition of array dist_code below */ | ||||
// !!!! Use flat array insdead of structure, Freq = i*2, Len = i*2+1 | ||||
var static_ltree = new Array((L_CODES + 2) * 2); | ||||
zero(static_ltree); | ||||
/* The static literal tree. Since the bit lengths are imposed, there is no | ||||
* need for the L_CODES extra codes used during heap construction. However | ||||
* The codes 286 and 287 are needed to build a canonical tree (see _tr_init | ||||
* below). | ||||
*/ | ||||
var static_dtree = new Array(D_CODES * 2); | ||||
zero(static_dtree); | ||||
/* The static distance tree. (Actually a trivial tree since all codes use | ||||
* 5 bits.) | ||||
*/ | ||||
var _dist_code = new Array(DIST_CODE_LEN); | ||||
zero(_dist_code); | ||||
/* Distance codes. The first 256 values correspond to the distances | ||||
* 3 .. 258, the last 256 values correspond to the top 8 bits of | ||||
* the 15 bit distances. | ||||
*/ | ||||
var _length_code = new Array(MAX_MATCH - MIN_MATCH + 1); | ||||
zero(_length_code); | ||||
/* length code for each normalized match length (0 == MIN_MATCH) */ | ||||
var base_length = new Array(LENGTH_CODES); | ||||
zero(base_length); | ||||
/* First normalized length for each code (0 = MIN_MATCH) */ | ||||
var base_dist = new Array(D_CODES); | ||||
zero(base_dist); | ||||
/* First normalized distance for each code (0 = distance of 1) */ | ||||
function StaticTreeDesc(static_tree, extra_bits, extra_base, elems, max_length) { | ||||
this.static_tree = static_tree; /* static tree or NULL */ | ||||
this.extra_bits = extra_bits; /* extra bits for each code or NULL */ | ||||
this.extra_base = extra_base; /* base index for extra_bits */ | ||||
this.elems = elems; /* max number of elements in the tree */ | ||||
this.max_length = max_length; /* max bit length for the codes */ | ||||
// show if `static_tree` has data or dummy - needed for monomorphic objects | ||||
this.has_stree = static_tree && static_tree.length; | ||||
} | ||||
var static_l_desc; | ||||
var static_d_desc; | ||||
var static_bl_desc; | ||||
function TreeDesc(dyn_tree, stat_desc) { | ||||
this.dyn_tree = dyn_tree; /* the dynamic tree */ | ||||
this.max_code = 0; /* largest code with non zero frequency */ | ||||
this.stat_desc = stat_desc; /* the corresponding static tree */ | ||||
} | ||||
function d_code(dist) { | ||||
return dist < 256 ? _dist_code[dist] : _dist_code[256 + (dist >>> 7)]; | ||||
} | ||||
/* =========================================================================== | ||||
* Output a short LSB first on the stream. | ||||
* IN assertion: there is enough room in pendingBuf. | ||||
*/ | ||||
function put_short(s, w) { | ||||
// put_byte(s, (uch)((w) & 0xff)); | ||||
// put_byte(s, (uch)((ush)(w) >> 8)); | ||||
s.pending_buf[s.pending++] = (w) & 0xff; | ||||
s.pending_buf[s.pending++] = (w >>> 8) & 0xff; | ||||
} | ||||
/* =========================================================================== | ||||
* Send a value on a given number of bits. | ||||
* IN assertion: length <= 16 and value fits in length bits. | ||||
*/ | ||||
function send_bits(s, value, length) { | ||||
if (s.bi_valid > (Buf_size - length)) { | ||||
s.bi_buf |= (value << s.bi_valid) & 0xffff; | ||||
put_short(s, s.bi_buf); | ||||
s.bi_buf = value >> (Buf_size - s.bi_valid); | ||||
s.bi_valid += length - Buf_size; | ||||
} else { | ||||
s.bi_buf |= (value << s.bi_valid) & 0xffff; | ||||
s.bi_valid += length; | ||||
} | ||||
} | ||||
function send_code(s, c, tree) { | ||||
send_bits(s, tree[c * 2]/*.Code*/, tree[c * 2 + 1]/*.Len*/); | ||||
} | ||||
/* =========================================================================== | ||||
* Reverse the first len bits of a code, using straightforward code (a faster | ||||
* method would use a table) | ||||
* IN assertion: 1 <= len <= 15 | ||||
*/ | ||||
function bi_reverse(code, len) { | ||||
var res = 0; | ||||
do { | ||||
res |= code & 1; | ||||
code >>>= 1; | ||||
res <<= 1; | ||||
} while (--len > 0); | ||||
return res >>> 1; | ||||
} | ||||
/* =========================================================================== | ||||
* Flush the bit buffer, keeping at most 7 bits in it. | ||||
*/ | ||||
function bi_flush(s) { | ||||
if (s.bi_valid === 16) { | ||||
put_short(s, s.bi_buf); | ||||
s.bi_buf = 0; | ||||
s.bi_valid = 0; | ||||
} else if (s.bi_valid >= 8) { | ||||
s.pending_buf[s.pending++] = s.bi_buf & 0xff; | ||||
s.bi_buf >>= 8; | ||||
s.bi_valid -= 8; | ||||
} | ||||
} | ||||
/* =========================================================================== | ||||
* Compute the optimal bit lengths for a tree and update the total bit length | ||||
* for the current block. | ||||
* IN assertion: the fields freq and dad are set, heap[heap_max] and | ||||
* above are the tree nodes sorted by increasing frequency. | ||||
* OUT assertions: the field len is set to the optimal bit length, the | ||||
* array bl_count contains the frequencies for each bit length. | ||||
* The length opt_len is updated; static_len is also updated if stree is | ||||
* not null. | ||||
*/ | ||||
function gen_bitlen(s, desc) | ||||
// deflate_state *s; | ||||
// tree_desc *desc; /* the tree descriptor */ | ||||
{ | ||||
var tree = desc.dyn_tree; | ||||
var max_code = desc.max_code; | ||||
var stree = desc.stat_desc.static_tree; | ||||
var has_stree = desc.stat_desc.has_stree; | ||||
var extra = desc.stat_desc.extra_bits; | ||||
var base = desc.stat_desc.extra_base; | ||||
var max_length = desc.stat_desc.max_length; | ||||
var h; /* heap index */ | ||||
var n, m; /* iterate over the tree elements */ | ||||
var bits; /* bit length */ | ||||
var xbits; /* extra bits */ | ||||
var f; /* frequency */ | ||||
var overflow = 0; /* number of elements with bit length too large */ | ||||
for (bits = 0; bits <= MAX_BITS; bits++) { | ||||
s.bl_count[bits] = 0; | ||||
} | ||||
/* In a first pass, compute the optimal bit lengths (which may | ||||
* overflow in the case of the bit length tree). | ||||
*/ | ||||
tree[s.heap[s.heap_max] * 2 + 1]/*.Len*/ = 0; /* root of the heap */ | ||||
for (h = s.heap_max + 1; h < HEAP_SIZE; h++) { | ||||
n = s.heap[h]; | ||||
bits = tree[tree[n * 2 + 1]/*.Dad*/ * 2 + 1]/*.Len*/ + 1; | ||||
if (bits > max_length) { | ||||
bits = max_length; | ||||
overflow++; | ||||
} | ||||
tree[n * 2 + 1]/*.Len*/ = bits; | ||||
/* We overwrite tree[n].Dad which is no longer needed */ | ||||
if (n > max_code) { continue; } /* not a leaf node */ | ||||
s.bl_count[bits]++; | ||||
xbits = 0; | ||||
if (n >= base) { | ||||
xbits = extra[n - base]; | ||||
} | ||||
f = tree[n * 2]/*.Freq*/; | ||||
s.opt_len += f * (bits + xbits); | ||||
if (has_stree) { | ||||
s.static_len += f * (stree[n * 2 + 1]/*.Len*/ + xbits); | ||||
} | ||||
} | ||||
if (overflow === 0) { return; } | ||||
// Trace((stderr,"\nbit length overflow\n")); | ||||
/* This happens for example on obj2 and pic of the Calgary corpus */ | ||||
/* Find the first bit length which could increase: */ | ||||
do { | ||||
bits = max_length - 1; | ||||
while (s.bl_count[bits] === 0) { bits--; } | ||||
s.bl_count[bits]--; /* move one leaf down the tree */ | ||||
s.bl_count[bits + 1] += 2; /* move one overflow item as its brother */ | ||||
s.bl_count[max_length]--; | ||||
/* The brother of the overflow item also moves one step up, | ||||
* but this does not affect bl_count[max_length] | ||||
*/ | ||||
overflow -= 2; | ||||
} while (overflow > 0); | ||||
/* Now recompute all bit lengths, scanning in increasing frequency. | ||||
* h is still equal to HEAP_SIZE. (It is simpler to reconstruct all | ||||
* lengths instead of fixing only the wrong ones. This idea is taken | ||||
* from 'ar' written by Haruhiko Okumura.) | ||||
*/ | ||||
for (bits = max_length; bits !== 0; bits--) { | ||||
n = s.bl_count[bits]; | ||||
while (n !== 0) { | ||||
m = s.heap[--h]; | ||||
if (m > max_code) { continue; } | ||||
if (tree[m * 2 + 1]/*.Len*/ !== bits) { | ||||
// Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); | ||||
s.opt_len += (bits - tree[m * 2 + 1]/*.Len*/) * tree[m * 2]/*.Freq*/; | ||||
tree[m * 2 + 1]/*.Len*/ = bits; | ||||
} | ||||
n--; | ||||
} | ||||
} | ||||
} | ||||
/* =========================================================================== | ||||
* Generate the codes for a given tree and bit counts (which need not be | ||||
* optimal). | ||||
* IN assertion: the array bl_count contains the bit length statistics for | ||||
* the given tree and the field len is set for all tree elements. | ||||
* OUT assertion: the field code is set for all tree elements of non | ||||
* zero code length. | ||||
*/ | ||||
function gen_codes(tree, max_code, bl_count) | ||||
// ct_data *tree; /* the tree to decorate */ | ||||
// int max_code; /* largest code with non zero frequency */ | ||||
// ushf *bl_count; /* number of codes at each bit length */ | ||||
{ | ||||
var next_code = new Array(MAX_BITS + 1); /* next code value for each bit length */ | ||||
var code = 0; /* running code value */ | ||||
var bits; /* bit index */ | ||||
var n; /* code index */ | ||||
/* The distribution counts are first used to generate the code values | ||||
* without bit reversal. | ||||
*/ | ||||
for (bits = 1; bits <= MAX_BITS; bits++) { | ||||
next_code[bits] = code = (code + bl_count[bits - 1]) << 1; | ||||
} | ||||
/* Check that the bit counts in bl_count are consistent. The last code | ||||
* must be all ones. | ||||
*/ | ||||
//Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1, | ||||
// "inconsistent bit counts"); | ||||
//Tracev((stderr,"\ngen_codes: max_code %d ", max_code)); | ||||
for (n = 0; n <= max_code; n++) { | ||||
var len = tree[n * 2 + 1]/*.Len*/; | ||||
if (len === 0) { continue; } | ||||
/* Now reverse the bits */ | ||||
tree[n * 2]/*.Code*/ = bi_reverse(next_code[len]++, len); | ||||
//Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ", | ||||
// n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1)); | ||||
} | ||||
} | ||||
/* =========================================================================== | ||||
* Initialize the various 'constant' tables. | ||||
*/ | ||||
function tr_static_init() { | ||||
var n; /* iterates over tree elements */ | ||||
var bits; /* bit counter */ | ||||
var length; /* length value */ | ||||
var code; /* code value */ | ||||
var dist; /* distance index */ | ||||
var bl_count = new Array(MAX_BITS + 1); | ||||
/* number of codes at each bit length for an optimal tree */ | ||||
// do check in _tr_init() | ||||
//if (static_init_done) return; | ||||
/* For some embedded targets, global variables are not initialized: */ | ||||
/*#ifdef NO_INIT_GLOBAL_POINTERS | ||||
static_l_desc.static_tree = static_ltree; | ||||
static_l_desc.extra_bits = extra_lbits; | ||||
static_d_desc.static_tree = static_dtree; | ||||
static_d_desc.extra_bits = extra_dbits; | ||||
static_bl_desc.extra_bits = extra_blbits; | ||||
#endif*/ | ||||
/* Initialize the mapping length (0..255) -> length code (0..28) */ | ||||
length = 0; | ||||
for (code = 0; code < LENGTH_CODES - 1; code++) { | ||||
base_length[code] = length; | ||||
for (n = 0; n < (1 << extra_lbits[code]); n++) { | ||||
_length_code[length++] = code; | ||||
} | ||||
} | ||||
//Assert (length == 256, "tr_static_init: length != 256"); | ||||
/* Note that the length 255 (match length 258) can be represented | ||||
* in two different ways: code 284 + 5 bits or code 285, so we | ||||
* overwrite length_code[255] to use the best encoding: | ||||
*/ | ||||
_length_code[length - 1] = code; | ||||
/* Initialize the mapping dist (0..32K) -> dist code (0..29) */ | ||||
dist = 0; | ||||
for (code = 0; code < 16; code++) { | ||||
base_dist[code] = dist; | ||||
for (n = 0; n < (1 << extra_dbits[code]); n++) { | ||||
_dist_code[dist++] = code; | ||||
} | ||||
} | ||||
//Assert (dist == 256, "tr_static_init: dist != 256"); | ||||
dist >>= 7; /* from now on, all distances are divided by 128 */ | ||||
for (; code < D_CODES; code++) { | ||||
base_dist[code] = dist << 7; | ||||
for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) { | ||||
_dist_code[256 + dist++] = code; | ||||
} | ||||
} | ||||
//Assert (dist == 256, "tr_static_init: 256+dist != 512"); | ||||
/* Construct the codes of the static literal tree */ | ||||
for (bits = 0; bits <= MAX_BITS; bits++) { | ||||
bl_count[bits] = 0; | ||||
} | ||||
n = 0; | ||||
while (n <= 143) { | ||||
static_ltree[n * 2 + 1]/*.Len*/ = 8; | ||||
n++; | ||||
bl_count[8]++; | ||||
} | ||||
while (n <= 255) { | ||||
static_ltree[n * 2 + 1]/*.Len*/ = 9; | ||||
n++; | ||||
bl_count[9]++; | ||||
} | ||||
while (n <= 279) { | ||||
static_ltree[n * 2 + 1]/*.Len*/ = 7; | ||||
n++; | ||||
bl_count[7]++; | ||||
} | ||||
while (n <= 287) { | ||||
static_ltree[n * 2 + 1]/*.Len*/ = 8; | ||||
n++; | ||||
bl_count[8]++; | ||||
} | ||||
/* Codes 286 and 287 do not exist, but we must include them in the | ||||
* tree construction to get a canonical Huffman tree (longest code | ||||
* all ones) | ||||
*/ | ||||
gen_codes(static_ltree, L_CODES + 1, bl_count); | ||||
/* The static distance tree is trivial: */ | ||||
for (n = 0; n < D_CODES; n++) { | ||||
static_dtree[n * 2 + 1]/*.Len*/ = 5; | ||||
static_dtree[n * 2]/*.Code*/ = bi_reverse(n, 5); | ||||
} | ||||
// Now data ready and we can init static trees | ||||
static_l_desc = new StaticTreeDesc(static_ltree, extra_lbits, LITERALS + 1, L_CODES, MAX_BITS); | ||||
static_d_desc = new StaticTreeDesc(static_dtree, extra_dbits, 0, D_CODES, MAX_BITS); | ||||
static_bl_desc = new StaticTreeDesc(new Array(0), extra_blbits, 0, BL_CODES, MAX_BL_BITS); | ||||
//static_init_done = true; | ||||
} | ||||
/* =========================================================================== | ||||
* Initialize a new block. | ||||
*/ | ||||
function init_block(s) { | ||||
var n; /* iterates over tree elements */ | ||||
/* Initialize the trees. */ | ||||
for (n = 0; n < L_CODES; n++) { s.dyn_ltree[n * 2]/*.Freq*/ = 0; } | ||||
for (n = 0; n < D_CODES; n++) { s.dyn_dtree[n * 2]/*.Freq*/ = 0; } | ||||
for (n = 0; n < BL_CODES; n++) { s.bl_tree[n * 2]/*.Freq*/ = 0; } | ||||
s.dyn_ltree[END_BLOCK * 2]/*.Freq*/ = 1; | ||||
s.opt_len = s.static_len = 0; | ||||
s.last_lit = s.matches = 0; | ||||
} | ||||
/* =========================================================================== | ||||
* Flush the bit buffer and align the output on a byte boundary | ||||
*/ | ||||
function bi_windup(s) | ||||
{ | ||||
if (s.bi_valid > 8) { | ||||
put_short(s, s.bi_buf); | ||||
} else if (s.bi_valid > 0) { | ||||
//put_byte(s, (Byte)s->bi_buf); | ||||
s.pending_buf[s.pending++] = s.bi_buf; | ||||
} | ||||
s.bi_buf = 0; | ||||
s.bi_valid = 0; | ||||
} | ||||
/* =========================================================================== | ||||
* Copy a stored block, storing first the length and its | ||||
* one's complement if requested. | ||||
*/ | ||||
function copy_block(s, buf, len, header) | ||||
//DeflateState *s; | ||||
//charf *buf; /* the input data */ | ||||
//unsigned len; /* its length */ | ||||
//int header; /* true if block header must be written */ | ||||
{ | ||||
bi_windup(s); /* align on byte boundary */ | ||||
if (header) { | ||||
put_short(s, len); | ||||
put_short(s, ~len); | ||||
} | ||||
// while (len--) { | ||||
// put_byte(s, *buf++); | ||||
// } | ||||
utils.arraySet(s.pending_buf, s.window, buf, len, s.pending); | ||||
s.pending += len; | ||||
} | ||||
/* =========================================================================== | ||||
* Compares to subtrees, using the tree depth as tie breaker when | ||||
* the subtrees have equal frequency. This minimizes the worst case length. | ||||
*/ | ||||
function smaller(tree, n, m, depth) { | ||||
var _n2 = n * 2; | ||||
var _m2 = m * 2; | ||||
return (tree[_n2]/*.Freq*/ < tree[_m2]/*.Freq*/ || | ||||
(tree[_n2]/*.Freq*/ === tree[_m2]/*.Freq*/ && depth[n] <= depth[m])); | ||||
} | ||||
/* =========================================================================== | ||||
* Restore the heap property by moving down the tree starting at node k, | ||||
* exchanging a node with the smallest of its two sons if necessary, stopping | ||||
* when the heap property is re-established (each father smaller than its | ||||
* two sons). | ||||
*/ | ||||
function pqdownheap(s, tree, k) | ||||
// deflate_state *s; | ||||
// ct_data *tree; /* the tree to restore */ | ||||
// int k; /* node to move down */ | ||||
{ | ||||
var v = s.heap[k]; | ||||
var j = k << 1; /* left son of k */ | ||||
while (j <= s.heap_len) { | ||||
/* Set j to the smallest of the two sons: */ | ||||
if (j < s.heap_len && | ||||
smaller(tree, s.heap[j + 1], s.heap[j], s.depth)) { | ||||
j++; | ||||
} | ||||
/* Exit if v is smaller than both sons */ | ||||
if (smaller(tree, v, s.heap[j], s.depth)) { break; } | ||||
/* Exchange v with the smallest son */ | ||||
s.heap[k] = s.heap[j]; | ||||
k = j; | ||||
/* And continue down the tree, setting j to the left son of k */ | ||||
j <<= 1; | ||||
} | ||||
s.heap[k] = v; | ||||
} | ||||
// inlined manually | ||||
// var SMALLEST = 1; | ||||
/* =========================================================================== | ||||
* Send the block data compressed using the given Huffman trees | ||||
*/ | ||||
function compress_block(s, ltree, dtree) | ||||
// deflate_state *s; | ||||
// const ct_data *ltree; /* literal tree */ | ||||
// const ct_data *dtree; /* distance tree */ | ||||
{ | ||||
var dist; /* distance of matched string */ | ||||
var lc; /* match length or unmatched char (if dist == 0) */ | ||||
var lx = 0; /* running index in l_buf */ | ||||
var code; /* the code to send */ | ||||
var extra; /* number of extra bits to send */ | ||||
if (s.last_lit !== 0) { | ||||
do { | ||||
dist = (s.pending_buf[s.d_buf + lx * 2] << 8) | (s.pending_buf[s.d_buf + lx * 2 + 1]); | ||||
lc = s.pending_buf[s.l_buf + lx]; | ||||
lx++; | ||||
if (dist === 0) { | ||||
send_code(s, lc, ltree); /* send a literal byte */ | ||||
//Tracecv(isgraph(lc), (stderr," '%c' ", lc)); | ||||
} else { | ||||
/* Here, lc is the match length - MIN_MATCH */ | ||||
code = _length_code[lc]; | ||||
send_code(s, code + LITERALS + 1, ltree); /* send the length code */ | ||||
extra = extra_lbits[code]; | ||||
if (extra !== 0) { | ||||
lc -= base_length[code]; | ||||
send_bits(s, lc, extra); /* send the extra length bits */ | ||||
} | ||||
dist--; /* dist is now the match distance - 1 */ | ||||
code = d_code(dist); | ||||
//Assert (code < D_CODES, "bad d_code"); | ||||
send_code(s, code, dtree); /* send the distance code */ | ||||
extra = extra_dbits[code]; | ||||
if (extra !== 0) { | ||||
dist -= base_dist[code]; | ||||
send_bits(s, dist, extra); /* send the extra distance bits */ | ||||
} | ||||
} /* literal or match pair ? */ | ||||
/* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ | ||||
//Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx, | ||||
// "pendingBuf overflow"); | ||||
} while (lx < s.last_lit); | ||||
} | ||||
send_code(s, END_BLOCK, ltree); | ||||
} | ||||
/* =========================================================================== | ||||
* Construct one Huffman tree and assigns the code bit strings and lengths. | ||||
* Update the total bit length for the current block. | ||||
* IN assertion: the field freq is set for all tree elements. | ||||
* OUT assertions: the fields len and code are set to the optimal bit length | ||||
* and corresponding code. The length opt_len is updated; static_len is | ||||
* also updated if stree is not null. The field max_code is set. | ||||
*/ | ||||
function build_tree(s, desc) | ||||
// deflate_state *s; | ||||
// tree_desc *desc; /* the tree descriptor */ | ||||
{ | ||||
var tree = desc.dyn_tree; | ||||
var stree = desc.stat_desc.static_tree; | ||||
var has_stree = desc.stat_desc.has_stree; | ||||
var elems = desc.stat_desc.elems; | ||||
var n, m; /* iterate over heap elements */ | ||||
var max_code = -1; /* largest code with non zero frequency */ | ||||
var node; /* new node being created */ | ||||
/* Construct the initial heap, with least frequent element in | ||||
* heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. | ||||
* heap[0] is not used. | ||||
*/ | ||||
s.heap_len = 0; | ||||
s.heap_max = HEAP_SIZE; | ||||
for (n = 0; n < elems; n++) { | ||||
if (tree[n * 2]/*.Freq*/ !== 0) { | ||||
s.heap[++s.heap_len] = max_code = n; | ||||
s.depth[n] = 0; | ||||
} else { | ||||
tree[n * 2 + 1]/*.Len*/ = 0; | ||||
} | ||||
} | ||||
/* The pkzip format requires that at least one distance code exists, | ||||
* and that at least one bit should be sent even if there is only one | ||||
* possible code. So to avoid special checks later on we force at least | ||||
* two codes of non zero frequency. | ||||
*/ | ||||
while (s.heap_len < 2) { | ||||
node = s.heap[++s.heap_len] = (max_code < 2 ? ++max_code : 0); | ||||
tree[node * 2]/*.Freq*/ = 1; | ||||
s.depth[node] = 0; | ||||
s.opt_len--; | ||||
if (has_stree) { | ||||
s.static_len -= stree[node * 2 + 1]/*.Len*/; | ||||
} | ||||
/* node is 0 or 1 so it does not have extra bits */ | ||||
} | ||||
desc.max_code = max_code; | ||||
/* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, | ||||
* establish sub-heaps of increasing lengths: | ||||
*/ | ||||
for (n = (s.heap_len >> 1/*int /2*/); n >= 1; n--) { pqdownheap(s, tree, n); } | ||||
/* Construct the Huffman tree by repeatedly combining the least two | ||||
* frequent nodes. | ||||
*/ | ||||
node = elems; /* next internal node of the tree */ | ||||
do { | ||||
//pqremove(s, tree, n); /* n = node of least frequency */ | ||||
/*** pqremove ***/ | ||||
n = s.heap[1/*SMALLEST*/]; | ||||
s.heap[1/*SMALLEST*/] = s.heap[s.heap_len--]; | ||||
pqdownheap(s, tree, 1/*SMALLEST*/); | ||||
/***/ | ||||
m = s.heap[1/*SMALLEST*/]; /* m = node of next least frequency */ | ||||
s.heap[--s.heap_max] = n; /* keep the nodes sorted by frequency */ | ||||
s.heap[--s.heap_max] = m; | ||||
/* Create a new node father of n and m */ | ||||
tree[node * 2]/*.Freq*/ = tree[n * 2]/*.Freq*/ + tree[m * 2]/*.Freq*/; | ||||
s.depth[node] = (s.depth[n] >= s.depth[m] ? s.depth[n] : s.depth[m]) + 1; | ||||
tree[n * 2 + 1]/*.Dad*/ = tree[m * 2 + 1]/*.Dad*/ = node; | ||||
/* and insert the new node in the heap */ | ||||
s.heap[1/*SMALLEST*/] = node++; | ||||
pqdownheap(s, tree, 1/*SMALLEST*/); | ||||
} while (s.heap_len >= 2); | ||||
s.heap[--s.heap_max] = s.heap[1/*SMALLEST*/]; | ||||
/* At this point, the fields freq and dad are set. We can now | ||||
* generate the bit lengths. | ||||
*/ | ||||
gen_bitlen(s, desc); | ||||
/* The field len is now set, we can generate the bit codes */ | ||||
gen_codes(tree, max_code, s.bl_count); | ||||
} | ||||
/* =========================================================================== | ||||
* Scan a literal or distance tree to determine the frequencies of the codes | ||||
* in the bit length tree. | ||||
*/ | ||||
function scan_tree(s, tree, max_code) | ||||
// deflate_state *s; | ||||
// ct_data *tree; /* the tree to be scanned */ | ||||
// int max_code; /* and its largest code of non zero frequency */ | ||||
{ | ||||
var n; /* iterates over all tree elements */ | ||||
var prevlen = -1; /* last emitted length */ | ||||
var curlen; /* length of current code */ | ||||
var nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */ | ||||
var count = 0; /* repeat count of the current code */ | ||||
var max_count = 7; /* max repeat count */ | ||||
var min_count = 4; /* min repeat count */ | ||||
if (nextlen === 0) { | ||||
max_count = 138; | ||||
min_count = 3; | ||||
} | ||||
tree[(max_code + 1) * 2 + 1]/*.Len*/ = 0xffff; /* guard */ | ||||
for (n = 0; n <= max_code; n++) { | ||||
curlen = nextlen; | ||||
nextlen = tree[(n + 1) * 2 + 1]/*.Len*/; | ||||
if (++count < max_count && curlen === nextlen) { | ||||
continue; | ||||
} else if (count < min_count) { | ||||
s.bl_tree[curlen * 2]/*.Freq*/ += count; | ||||
} else if (curlen !== 0) { | ||||
if (curlen !== prevlen) { s.bl_tree[curlen * 2]/*.Freq*/++; } | ||||
s.bl_tree[REP_3_6 * 2]/*.Freq*/++; | ||||
} else if (count <= 10) { | ||||
s.bl_tree[REPZ_3_10 * 2]/*.Freq*/++; | ||||
} else { | ||||
s.bl_tree[REPZ_11_138 * 2]/*.Freq*/++; | ||||
} | ||||
count = 0; | ||||
prevlen = curlen; | ||||
if (nextlen === 0) { | ||||
max_count = 138; | ||||
min_count = 3; | ||||
} else if (curlen === nextlen) { | ||||
max_count = 6; | ||||
min_count = 3; | ||||
} else { | ||||
max_count = 7; | ||||
min_count = 4; | ||||
} | ||||
} | ||||
} | ||||
/* =========================================================================== | ||||
* Send a literal or distance tree in compressed form, using the codes in | ||||
* bl_tree. | ||||
*/ | ||||
function send_tree(s, tree, max_code) | ||||
// deflate_state *s; | ||||
// ct_data *tree; /* the tree to be scanned */ | ||||
// int max_code; /* and its largest code of non zero frequency */ | ||||
{ | ||||
var n; /* iterates over all tree elements */ | ||||
var prevlen = -1; /* last emitted length */ | ||||
var curlen; /* length of current code */ | ||||
var nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */ | ||||
var count = 0; /* repeat count of the current code */ | ||||
var max_count = 7; /* max repeat count */ | ||||
var min_count = 4; /* min repeat count */ | ||||
/* tree[max_code+1].Len = -1; */ /* guard already set */ | ||||
if (nextlen === 0) { | ||||
max_count = 138; | ||||
min_count = 3; | ||||
} | ||||
for (n = 0; n <= max_code; n++) { | ||||
curlen = nextlen; | ||||
nextlen = tree[(n + 1) * 2 + 1]/*.Len*/; | ||||
if (++count < max_count && curlen === nextlen) { | ||||
continue; | ||||
} else if (count < min_count) { | ||||
do { send_code(s, curlen, s.bl_tree); } while (--count !== 0); | ||||
} else if (curlen !== 0) { | ||||
if (curlen !== prevlen) { | ||||
send_code(s, curlen, s.bl_tree); | ||||
count--; | ||||
} | ||||
//Assert(count >= 3 && count <= 6, " 3_6?"); | ||||
send_code(s, REP_3_6, s.bl_tree); | ||||
send_bits(s, count - 3, 2); | ||||
} else if (count <= 10) { | ||||
send_code(s, REPZ_3_10, s.bl_tree); | ||||
send_bits(s, count - 3, 3); | ||||
} else { | ||||
send_code(s, REPZ_11_138, s.bl_tree); | ||||
send_bits(s, count - 11, 7); | ||||
} | ||||
count = 0; | ||||
prevlen = curlen; | ||||
if (nextlen === 0) { | ||||
max_count = 138; | ||||
min_count = 3; | ||||
} else if (curlen === nextlen) { | ||||
max_count = 6; | ||||
min_count = 3; | ||||
} else { | ||||
max_count = 7; | ||||
min_count = 4; | ||||
} | ||||
} | ||||
} | ||||
/* =========================================================================== | ||||
* Construct the Huffman tree for the bit lengths and return the index in | ||||
* bl_order of the last bit length code to send. | ||||
*/ | ||||
function build_bl_tree(s) { | ||||
var max_blindex; /* index of last bit length code of non zero freq */ | ||||
/* Determine the bit length frequencies for literal and distance trees */ | ||||
scan_tree(s, s.dyn_ltree, s.l_desc.max_code); | ||||
scan_tree(s, s.dyn_dtree, s.d_desc.max_code); | ||||
/* Build the bit length tree: */ | ||||
build_tree(s, s.bl_desc); | ||||
/* opt_len now includes the length of the tree representations, except | ||||
* the lengths of the bit lengths codes and the 5+5+4 bits for the counts. | ||||
*/ | ||||
/* Determine the number of bit length codes to send. The pkzip format | ||||
* requires that at least 4 bit length codes be sent. (appnote.txt says | ||||
* 3 but the actual value used is 4.) | ||||
*/ | ||||
for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) { | ||||
if (s.bl_tree[bl_order[max_blindex] * 2 + 1]/*.Len*/ !== 0) { | ||||
break; | ||||
} | ||||
} | ||||
/* Update opt_len to include the bit length tree and counts */ | ||||
s.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4; | ||||
//Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", | ||||
// s->opt_len, s->static_len)); | ||||
return max_blindex; | ||||
} | ||||
/* =========================================================================== | ||||
* Send the header for a block using dynamic Huffman trees: the counts, the | ||||
* lengths of the bit length codes, the literal tree and the distance tree. | ||||
* IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. | ||||
*/ | ||||
function send_all_trees(s, lcodes, dcodes, blcodes) | ||||
// deflate_state *s; | ||||
// int lcodes, dcodes, blcodes; /* number of codes for each tree */ | ||||
{ | ||||
var rank; /* index in bl_order */ | ||||
//Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); | ||||
//Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, | ||||
// "too many codes"); | ||||
//Tracev((stderr, "\nbl counts: ")); | ||||
send_bits(s, lcodes - 257, 5); /* not +255 as stated in appnote.txt */ | ||||
send_bits(s, dcodes - 1, 5); | ||||
send_bits(s, blcodes - 4, 4); /* not -3 as stated in appnote.txt */ | ||||
for (rank = 0; rank < blcodes; rank++) { | ||||
//Tracev((stderr, "\nbl code %2d ", bl_order[rank])); | ||||
send_bits(s, s.bl_tree[bl_order[rank] * 2 + 1]/*.Len*/, 3); | ||||
} | ||||
//Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); | ||||
send_tree(s, s.dyn_ltree, lcodes - 1); /* literal tree */ | ||||
//Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); | ||||
send_tree(s, s.dyn_dtree, dcodes - 1); /* distance tree */ | ||||
//Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); | ||||
} | ||||
/* =========================================================================== | ||||
* Check if the data type is TEXT or BINARY, using the following algorithm: | ||||
* - TEXT if the two conditions below are satisfied: | ||||
* a) There are no non-portable control characters belonging to the | ||||
* "black list" (0..6, 14..25, 28..31). | ||||
* b) There is at least one printable character belonging to the | ||||
* "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255). | ||||
* - BINARY otherwise. | ||||
* - The following partially-portable control characters form a | ||||
* "gray list" that is ignored in this detection algorithm: | ||||
* (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}). | ||||
* IN assertion: the fields Freq of dyn_ltree are set. | ||||
*/ | ||||
function detect_data_type(s) { | ||||
/* black_mask is the bit mask of black-listed bytes | ||||
* set bits 0..6, 14..25, and 28..31 | ||||
* 0xf3ffc07f = binary 11110011111111111100000001111111 | ||||
*/ | ||||
var black_mask = 0xf3ffc07f; | ||||
var n; | ||||
/* Check for non-textual ("black-listed") bytes. */ | ||||
for (n = 0; n <= 31; n++, black_mask >>>= 1) { | ||||
if ((black_mask & 1) && (s.dyn_ltree[n * 2]/*.Freq*/ !== 0)) { | ||||
return Z_BINARY; | ||||
} | ||||
} | ||||
/* Check for textual ("white-listed") bytes. */ | ||||
if (s.dyn_ltree[9 * 2]/*.Freq*/ !== 0 || s.dyn_ltree[10 * 2]/*.Freq*/ !== 0 || | ||||
s.dyn_ltree[13 * 2]/*.Freq*/ !== 0) { | ||||
return Z_TEXT; | ||||
} | ||||
for (n = 32; n < LITERALS; n++) { | ||||
if (s.dyn_ltree[n * 2]/*.Freq*/ !== 0) { | ||||
return Z_TEXT; | ||||
} | ||||
} | ||||
/* There are no "black-listed" or "white-listed" bytes: | ||||
* this stream either is empty or has tolerated ("gray-listed") bytes only. | ||||
*/ | ||||
return Z_BINARY; | ||||
} | ||||
var static_init_done = false; | ||||
/* =========================================================================== | ||||
* Initialize the tree data structures for a new zlib stream. | ||||
*/ | ||||
function _tr_init(s) | ||||
{ | ||||
if (!static_init_done) { | ||||
tr_static_init(); | ||||
static_init_done = true; | ||||
} | ||||
s.l_desc = new TreeDesc(s.dyn_ltree, static_l_desc); | ||||
s.d_desc = new TreeDesc(s.dyn_dtree, static_d_desc); | ||||
s.bl_desc = new TreeDesc(s.bl_tree, static_bl_desc); | ||||
s.bi_buf = 0; | ||||
s.bi_valid = 0; | ||||
/* Initialize the first block of the first file: */ | ||||
init_block(s); | ||||
} | ||||
/* =========================================================================== | ||||
* Send a stored block | ||||
*/ | ||||
function _tr_stored_block(s, buf, stored_len, last) | ||||
//DeflateState *s; | ||||
//charf *buf; /* input block */ | ||||
//ulg stored_len; /* length of input block */ | ||||
//int last; /* one if this is the last block for a file */ | ||||
{ | ||||
send_bits(s, (STORED_BLOCK << 1) + (last ? 1 : 0), 3); /* send block type */ | ||||
copy_block(s, buf, stored_len, true); /* with header */ | ||||
} | ||||
/* =========================================================================== | ||||
* Send one empty static block to give enough lookahead for inflate. | ||||
* This takes 10 bits, of which 7 may remain in the bit buffer. | ||||
*/ | ||||
function _tr_align(s) { | ||||
send_bits(s, STATIC_TREES << 1, 3); | ||||
send_code(s, END_BLOCK, static_ltree); | ||||
bi_flush(s); | ||||
} | ||||
/* =========================================================================== | ||||
* Determine the best encoding for the current block: dynamic trees, static | ||||
* trees or store, and output the encoded block to the zip file. | ||||
*/ | ||||
function _tr_flush_block(s, buf, stored_len, last) | ||||
//DeflateState *s; | ||||
//charf *buf; /* input block, or NULL if too old */ | ||||
//ulg stored_len; /* length of input block */ | ||||
//int last; /* one if this is the last block for a file */ | ||||
{ | ||||
var opt_lenb, static_lenb; /* opt_len and static_len in bytes */ | ||||
var max_blindex = 0; /* index of last bit length code of non zero freq */ | ||||
/* Build the Huffman trees unless a stored block is forced */ | ||||
if (s.level > 0) { | ||||
/* Check if the file is binary or text */ | ||||
if (s.strm.data_type === Z_UNKNOWN) { | ||||
s.strm.data_type = detect_data_type(s); | ||||
} | ||||
/* Construct the literal and distance trees */ | ||||
build_tree(s, s.l_desc); | ||||
// Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, | ||||
// s->static_len)); | ||||
build_tree(s, s.d_desc); | ||||
// Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, | ||||
// s->static_len)); | ||||
/* At this point, opt_len and static_len are the total bit lengths of | ||||
* the compressed block data, excluding the tree representations. | ||||
*/ | ||||
/* Build the bit length tree for the above two trees, and get the index | ||||
* in bl_order of the last bit length code to send. | ||||
*/ | ||||
max_blindex = build_bl_tree(s); | ||||
/* Determine the best encoding. Compute the block lengths in bytes. */ | ||||
opt_lenb = (s.opt_len + 3 + 7) >>> 3; | ||||
static_lenb = (s.static_len + 3 + 7) >>> 3; | ||||
// Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", | ||||
// opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, | ||||
// s->last_lit)); | ||||
if (static_lenb <= opt_lenb) { opt_lenb = static_lenb; } | ||||
} else { | ||||
// Assert(buf != (char*)0, "lost buf"); | ||||
opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ | ||||
} | ||||
if ((stored_len + 4 <= opt_lenb) && (buf !== -1)) { | ||||
/* 4: two words for the lengths */ | ||||
/* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. | ||||
* Otherwise we can't have processed more than WSIZE input bytes since | ||||
* the last block flush, because compression would have been | ||||
* successful. If LIT_BUFSIZE <= WSIZE, it is never too late to | ||||
* transform a block into a stored block. | ||||
*/ | ||||
_tr_stored_block(s, buf, stored_len, last); | ||||
} else if (s.strategy === Z_FIXED || static_lenb === opt_lenb) { | ||||
send_bits(s, (STATIC_TREES << 1) + (last ? 1 : 0), 3); | ||||
compress_block(s, static_ltree, static_dtree); | ||||
} else { | ||||
send_bits(s, (DYN_TREES << 1) + (last ? 1 : 0), 3); | ||||
send_all_trees(s, s.l_desc.max_code + 1, s.d_desc.max_code + 1, max_blindex + 1); | ||||
compress_block(s, s.dyn_ltree, s.dyn_dtree); | ||||
} | ||||
// Assert (s->compressed_len == s->bits_sent, "bad compressed size"); | ||||
/* The above check is made mod 2^32, for files larger than 512 MB | ||||
* and uLong implemented on 32 bits. | ||||
*/ | ||||
init_block(s); | ||||
if (last) { | ||||
bi_windup(s); | ||||
} | ||||
// Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, | ||||
// s->compressed_len-7*last)); | ||||
} | ||||
/* =========================================================================== | ||||
* Save the match info and tally the frequency counts. Return true if | ||||
* the current block must be flushed. | ||||
*/ | ||||
function _tr_tally(s, dist, lc) | ||||
// deflate_state *s; | ||||
// unsigned dist; /* distance of matched string */ | ||||
// unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */ | ||||
{ | ||||
//var out_length, in_length, dcode; | ||||
s.pending_buf[s.d_buf + s.last_lit * 2] = (dist >>> 8) & 0xff; | ||||
s.pending_buf[s.d_buf + s.last_lit * 2 + 1] = dist & 0xff; | ||||
s.pending_buf[s.l_buf + s.last_lit] = lc & 0xff; | ||||
s.last_lit++; | ||||
if (dist === 0) { | ||||
/* lc is the unmatched char */ | ||||
s.dyn_ltree[lc * 2]/*.Freq*/++; | ||||
} else { | ||||
s.matches++; | ||||
/* Here, lc is the match length - MIN_MATCH */ | ||||
dist--; /* dist = match distance - 1 */ | ||||
//Assert((ush)dist < (ush)MAX_DIST(s) && | ||||
// (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && | ||||
// (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match"); | ||||
s.dyn_ltree[(_length_code[lc] + LITERALS + 1) * 2]/*.Freq*/++; | ||||
s.dyn_dtree[d_code(dist) * 2]/*.Freq*/++; | ||||
} | ||||
// (!) This block is disabled in zlib defailts, | ||||
// don't enable it for binary compatibility | ||||
//#ifdef TRUNCATE_BLOCK | ||||
// /* Try to guess if it is profitable to stop the current block here */ | ||||
// if ((s.last_lit & 0x1fff) === 0 && s.level > 2) { | ||||
// /* Compute an upper bound for the compressed length */ | ||||
// out_length = s.last_lit*8; | ||||
// in_length = s.strstart - s.block_start; | ||||
// | ||||
// for (dcode = 0; dcode < D_CODES; dcode++) { | ||||
// out_length += s.dyn_dtree[dcode*2]/*.Freq*/ * (5 + extra_dbits[dcode]); | ||||
// } | ||||
// out_length >>>= 3; | ||||
// //Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", | ||||
// // s->last_lit, in_length, out_length, | ||||
// // 100L - out_length*100L/in_length)); | ||||
// if (s.matches < (s.last_lit>>1)/*int /2*/ && out_length < (in_length>>1)/*int /2*/) { | ||||
// return true; | ||||
// } | ||||
// } | ||||
//#endif | ||||
return (s.last_lit === s.lit_bufsize - 1); | ||||
/* We avoid equality with lit_bufsize because of wraparound at 64K | ||||
* on 16 bit machines and because stored blocks are restricted to | ||||
* 64K-1 bytes. | ||||
*/ | ||||
} | ||||
exports._tr_init = _tr_init; | ||||
exports._tr_stored_block = _tr_stored_block; | ||||
exports._tr_flush_block = _tr_flush_block; | ||||
exports._tr_tally = _tr_tally; | ||||
exports._tr_align = _tr_align; | ||||