Show More
Commit Description:
fix wrong merge
Commit Description:
fix wrong merge
References:
File last commit:
Show/Diff file:
Action:
node_modules/pako/lib/zlib/deflate.js
| 1855 lines
| 58.8 KiB
| application/javascript
| JavascriptLexer
|
r789 | 'use strict'; | |||
var utils = require('../utils/common'); | ||||
var trees = require('./trees'); | ||||
var adler32 = require('./adler32'); | ||||
var crc32 = require('./crc32'); | ||||
var msg = require('./messages'); | ||||
/* Public constants ==========================================================*/ | ||||
/* ===========================================================================*/ | ||||
/* Allowed flush values; see deflate() and inflate() below for details */ | ||||
var Z_NO_FLUSH = 0; | ||||
var Z_PARTIAL_FLUSH = 1; | ||||
//var Z_SYNC_FLUSH = 2; | ||||
var Z_FULL_FLUSH = 3; | ||||
var Z_FINISH = 4; | ||||
var Z_BLOCK = 5; | ||||
//var Z_TREES = 6; | ||||
/* Return codes for the compression/decompression functions. Negative values | ||||
* are errors, positive values are used for special but normal events. | ||||
*/ | ||||
var Z_OK = 0; | ||||
var Z_STREAM_END = 1; | ||||
//var Z_NEED_DICT = 2; | ||||
//var Z_ERRNO = -1; | ||||
var Z_STREAM_ERROR = -2; | ||||
var Z_DATA_ERROR = -3; | ||||
//var Z_MEM_ERROR = -4; | ||||
var Z_BUF_ERROR = -5; | ||||
//var Z_VERSION_ERROR = -6; | ||||
/* compression levels */ | ||||
//var Z_NO_COMPRESSION = 0; | ||||
//var Z_BEST_SPEED = 1; | ||||
//var Z_BEST_COMPRESSION = 9; | ||||
var Z_DEFAULT_COMPRESSION = -1; | ||||
var Z_FILTERED = 1; | ||||
var Z_HUFFMAN_ONLY = 2; | ||||
var Z_RLE = 3; | ||||
var Z_FIXED = 4; | ||||
var Z_DEFAULT_STRATEGY = 0; | ||||
/* Possible values of the data_type field (though see inflate()) */ | ||||
//var Z_BINARY = 0; | ||||
//var Z_TEXT = 1; | ||||
//var Z_ASCII = 1; // = Z_TEXT | ||||
var Z_UNKNOWN = 2; | ||||
/* The deflate compression method */ | ||||
var Z_DEFLATED = 8; | ||||
/*============================================================================*/ | ||||
var MAX_MEM_LEVEL = 9; | ||||
/* Maximum value for memLevel in deflateInit2 */ | ||||
var MAX_WBITS = 15; | ||||
/* 32K LZ77 window */ | ||||
var DEF_MEM_LEVEL = 8; | ||||
var LENGTH_CODES = 29; | ||||
/* number of length codes, not counting the special END_BLOCK code */ | ||||
var LITERALS = 256; | ||||
/* number of literal bytes 0..255 */ | ||||
var L_CODES = LITERALS + 1 + LENGTH_CODES; | ||||
/* number of Literal or Length codes, including the END_BLOCK code */ | ||||
var D_CODES = 30; | ||||
/* number of distance codes */ | ||||
var BL_CODES = 19; | ||||
/* number of codes used to transfer the bit lengths */ | ||||
var HEAP_SIZE = 2 * L_CODES + 1; | ||||
/* maximum heap size */ | ||||
var MAX_BITS = 15; | ||||
/* All codes must not exceed MAX_BITS bits */ | ||||
var MIN_MATCH = 3; | ||||
var MAX_MATCH = 258; | ||||
var MIN_LOOKAHEAD = (MAX_MATCH + MIN_MATCH + 1); | ||||
var PRESET_DICT = 0x20; | ||||
var INIT_STATE = 42; | ||||
var EXTRA_STATE = 69; | ||||
var NAME_STATE = 73; | ||||
var COMMENT_STATE = 91; | ||||
var HCRC_STATE = 103; | ||||
var BUSY_STATE = 113; | ||||
var FINISH_STATE = 666; | ||||
var BS_NEED_MORE = 1; /* block not completed, need more input or more output */ | ||||
var BS_BLOCK_DONE = 2; /* block flush performed */ | ||||
var BS_FINISH_STARTED = 3; /* finish started, need only more output at next deflate */ | ||||
var BS_FINISH_DONE = 4; /* finish done, accept no more input or output */ | ||||
var OS_CODE = 0x03; // Unix :) . Don't detect, use this default. | ||||
function err(strm, errorCode) { | ||||
strm.msg = msg[errorCode]; | ||||
return errorCode; | ||||
} | ||||
function rank(f) { | ||||
return ((f) << 1) - ((f) > 4 ? 9 : 0); | ||||
} | ||||
function zero(buf) { var len = buf.length; while (--len >= 0) { buf[len] = 0; } } | ||||
/* ========================================================================= | ||||
* Flush as much pending output as possible. All deflate() output goes | ||||
* through this function so some applications may wish to modify it | ||||
* to avoid allocating a large strm->output buffer and copying into it. | ||||
* (See also read_buf()). | ||||
*/ | ||||
function flush_pending(strm) { | ||||
var s = strm.state; | ||||
//_tr_flush_bits(s); | ||||
var len = s.pending; | ||||
if (len > strm.avail_out) { | ||||
len = strm.avail_out; | ||||
} | ||||
if (len === 0) { return; } | ||||
utils.arraySet(strm.output, s.pending_buf, s.pending_out, len, strm.next_out); | ||||
strm.next_out += len; | ||||
s.pending_out += len; | ||||
strm.total_out += len; | ||||
strm.avail_out -= len; | ||||
s.pending -= len; | ||||
if (s.pending === 0) { | ||||
s.pending_out = 0; | ||||
} | ||||
} | ||||
function flush_block_only(s, last) { | ||||
trees._tr_flush_block(s, (s.block_start >= 0 ? s.block_start : -1), s.strstart - s.block_start, last); | ||||
s.block_start = s.strstart; | ||||
flush_pending(s.strm); | ||||
} | ||||
function put_byte(s, b) { | ||||
s.pending_buf[s.pending++] = b; | ||||
} | ||||
/* ========================================================================= | ||||
* Put a short in the pending buffer. The 16-bit value is put in MSB order. | ||||
* IN assertion: the stream state is correct and there is enough room in | ||||
* pending_buf. | ||||
*/ | ||||
function putShortMSB(s, b) { | ||||
// put_byte(s, (Byte)(b >> 8)); | ||||
// put_byte(s, (Byte)(b & 0xff)); | ||||
s.pending_buf[s.pending++] = (b >>> 8) & 0xff; | ||||
s.pending_buf[s.pending++] = b & 0xff; | ||||
} | ||||
/* =========================================================================== | ||||
* Read a new buffer from the current input stream, update the adler32 | ||||
* and total number of bytes read. All deflate() input goes through | ||||
* this function so some applications may wish to modify it to avoid | ||||
* allocating a large strm->input buffer and copying from it. | ||||
* (See also flush_pending()). | ||||
*/ | ||||
function read_buf(strm, buf, start, size) { | ||||
var len = strm.avail_in; | ||||
if (len > size) { len = size; } | ||||
if (len === 0) { return 0; } | ||||
strm.avail_in -= len; | ||||
// zmemcpy(buf, strm->next_in, len); | ||||
utils.arraySet(buf, strm.input, strm.next_in, len, start); | ||||
if (strm.state.wrap === 1) { | ||||
strm.adler = adler32(strm.adler, buf, len, start); | ||||
} | ||||
else if (strm.state.wrap === 2) { | ||||
strm.adler = crc32(strm.adler, buf, len, start); | ||||
} | ||||
strm.next_in += len; | ||||
strm.total_in += len; | ||||
return len; | ||||
} | ||||
/* =========================================================================== | ||||
* Set match_start to the longest match starting at the given string and | ||||
* return its length. Matches shorter or equal to prev_length are discarded, | ||||
* in which case the result is equal to prev_length and match_start is | ||||
* garbage. | ||||
* IN assertions: cur_match is the head of the hash chain for the current | ||||
* string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 | ||||
* OUT assertion: the match length is not greater than s->lookahead. | ||||
*/ | ||||
function longest_match(s, cur_match) { | ||||
var chain_length = s.max_chain_length; /* max hash chain length */ | ||||
var scan = s.strstart; /* current string */ | ||||
var match; /* matched string */ | ||||
var len; /* length of current match */ | ||||
var best_len = s.prev_length; /* best match length so far */ | ||||
var nice_match = s.nice_match; /* stop if match long enough */ | ||||
var limit = (s.strstart > (s.w_size - MIN_LOOKAHEAD)) ? | ||||
s.strstart - (s.w_size - MIN_LOOKAHEAD) : 0/*NIL*/; | ||||
var _win = s.window; // shortcut | ||||
var wmask = s.w_mask; | ||||
var prev = s.prev; | ||||
/* Stop when cur_match becomes <= limit. To simplify the code, | ||||
* we prevent matches with the string of window index 0. | ||||
*/ | ||||
var strend = s.strstart + MAX_MATCH; | ||||
var scan_end1 = _win[scan + best_len - 1]; | ||||
var scan_end = _win[scan + best_len]; | ||||
/* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. | ||||
* It is easy to get rid of this optimization if necessary. | ||||
*/ | ||||
// Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); | ||||
/* Do not waste too much time if we already have a good match: */ | ||||
if (s.prev_length >= s.good_match) { | ||||
chain_length >>= 2; | ||||
} | ||||
/* Do not look for matches beyond the end of the input. This is necessary | ||||
* to make deflate deterministic. | ||||
*/ | ||||
if (nice_match > s.lookahead) { nice_match = s.lookahead; } | ||||
// Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); | ||||
do { | ||||
// Assert(cur_match < s->strstart, "no future"); | ||||
match = cur_match; | ||||
/* Skip to next match if the match length cannot increase | ||||
* or if the match length is less than 2. Note that the checks below | ||||
* for insufficient lookahead only occur occasionally for performance | ||||
* reasons. Therefore uninitialized memory will be accessed, and | ||||
* conditional jumps will be made that depend on those values. | ||||
* However the length of the match is limited to the lookahead, so | ||||
* the output of deflate is not affected by the uninitialized values. | ||||
*/ | ||||
if (_win[match + best_len] !== scan_end || | ||||
_win[match + best_len - 1] !== scan_end1 || | ||||
_win[match] !== _win[scan] || | ||||
_win[++match] !== _win[scan + 1]) { | ||||
continue; | ||||
} | ||||
/* The check at best_len-1 can be removed because it will be made | ||||
* again later. (This heuristic is not always a win.) | ||||
* It is not necessary to compare scan[2] and match[2] since they | ||||
* are always equal when the other bytes match, given that | ||||
* the hash keys are equal and that HASH_BITS >= 8. | ||||
*/ | ||||
scan += 2; | ||||
match++; | ||||
// Assert(*scan == *match, "match[2]?"); | ||||
/* We check for insufficient lookahead only every 8th comparison; | ||||
* the 256th check will be made at strstart+258. | ||||
*/ | ||||
do { | ||||
/*jshint noempty:false*/ | ||||
} while (_win[++scan] === _win[++match] && _win[++scan] === _win[++match] && | ||||
_win[++scan] === _win[++match] && _win[++scan] === _win[++match] && | ||||
_win[++scan] === _win[++match] && _win[++scan] === _win[++match] && | ||||
_win[++scan] === _win[++match] && _win[++scan] === _win[++match] && | ||||
scan < strend); | ||||
// Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); | ||||
len = MAX_MATCH - (strend - scan); | ||||
scan = strend - MAX_MATCH; | ||||
if (len > best_len) { | ||||
s.match_start = cur_match; | ||||
best_len = len; | ||||
if (len >= nice_match) { | ||||
break; | ||||
} | ||||
scan_end1 = _win[scan + best_len - 1]; | ||||
scan_end = _win[scan + best_len]; | ||||
} | ||||
} while ((cur_match = prev[cur_match & wmask]) > limit && --chain_length !== 0); | ||||
if (best_len <= s.lookahead) { | ||||
return best_len; | ||||
} | ||||
return s.lookahead; | ||||
} | ||||
/* =========================================================================== | ||||
* Fill the window when the lookahead becomes insufficient. | ||||
* Updates strstart and lookahead. | ||||
* | ||||
* IN assertion: lookahead < MIN_LOOKAHEAD | ||||
* OUT assertions: strstart <= window_size-MIN_LOOKAHEAD | ||||
* At least one byte has been read, or avail_in == 0; reads are | ||||
* performed for at least two bytes (required for the zip translate_eol | ||||
* option -- not supported here). | ||||
*/ | ||||
function fill_window(s) { | ||||
var _w_size = s.w_size; | ||||
var p, n, m, more, str; | ||||
//Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead"); | ||||
do { | ||||
more = s.window_size - s.lookahead - s.strstart; | ||||
// JS ints have 32 bit, block below not needed | ||||
/* Deal with !@#$% 64K limit: */ | ||||
//if (sizeof(int) <= 2) { | ||||
// if (more == 0 && s->strstart == 0 && s->lookahead == 0) { | ||||
// more = wsize; | ||||
// | ||||
// } else if (more == (unsigned)(-1)) { | ||||
// /* Very unlikely, but possible on 16 bit machine if | ||||
// * strstart == 0 && lookahead == 1 (input done a byte at time) | ||||
// */ | ||||
// more--; | ||||
// } | ||||
//} | ||||
/* If the window is almost full and there is insufficient lookahead, | ||||
* move the upper half to the lower one to make room in the upper half. | ||||
*/ | ||||
if (s.strstart >= _w_size + (_w_size - MIN_LOOKAHEAD)) { | ||||
utils.arraySet(s.window, s.window, _w_size, _w_size, 0); | ||||
s.match_start -= _w_size; | ||||
s.strstart -= _w_size; | ||||
/* we now have strstart >= MAX_DIST */ | ||||
s.block_start -= _w_size; | ||||
/* Slide the hash table (could be avoided with 32 bit values | ||||
at the expense of memory usage). We slide even when level == 0 | ||||
to keep the hash table consistent if we switch back to level > 0 | ||||
later. (Using level 0 permanently is not an optimal usage of | ||||
zlib, so we don't care about this pathological case.) | ||||
*/ | ||||
n = s.hash_size; | ||||
p = n; | ||||
do { | ||||
m = s.head[--p]; | ||||
s.head[p] = (m >= _w_size ? m - _w_size : 0); | ||||
} while (--n); | ||||
n = _w_size; | ||||
p = n; | ||||
do { | ||||
m = s.prev[--p]; | ||||
s.prev[p] = (m >= _w_size ? m - _w_size : 0); | ||||
/* If n is not on any hash chain, prev[n] is garbage but | ||||
* its value will never be used. | ||||
*/ | ||||
} while (--n); | ||||
more += _w_size; | ||||
} | ||||
if (s.strm.avail_in === 0) { | ||||
break; | ||||
} | ||||
/* If there was no sliding: | ||||
* strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && | ||||
* more == window_size - lookahead - strstart | ||||
* => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) | ||||
* => more >= window_size - 2*WSIZE + 2 | ||||
* In the BIG_MEM or MMAP case (not yet supported), | ||||
* window_size == input_size + MIN_LOOKAHEAD && | ||||
* strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. | ||||
* Otherwise, window_size == 2*WSIZE so more >= 2. | ||||
* If there was sliding, more >= WSIZE. So in all cases, more >= 2. | ||||
*/ | ||||
//Assert(more >= 2, "more < 2"); | ||||
n = read_buf(s.strm, s.window, s.strstart + s.lookahead, more); | ||||
s.lookahead += n; | ||||
/* Initialize the hash value now that we have some input: */ | ||||
if (s.lookahead + s.insert >= MIN_MATCH) { | ||||
str = s.strstart - s.insert; | ||||
s.ins_h = s.window[str]; | ||||
/* UPDATE_HASH(s, s->ins_h, s->window[str + 1]); */ | ||||
s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[str + 1]) & s.hash_mask; | ||||
//#if MIN_MATCH != 3 | ||||
// Call update_hash() MIN_MATCH-3 more times | ||||
//#endif | ||||
while (s.insert) { | ||||
/* UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); */ | ||||
s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[str + MIN_MATCH - 1]) & s.hash_mask; | ||||
s.prev[str & s.w_mask] = s.head[s.ins_h]; | ||||
s.head[s.ins_h] = str; | ||||
str++; | ||||
s.insert--; | ||||
if (s.lookahead + s.insert < MIN_MATCH) { | ||||
break; | ||||
} | ||||
} | ||||
} | ||||
/* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, | ||||
* but this is not important since only literal bytes will be emitted. | ||||
*/ | ||||
} while (s.lookahead < MIN_LOOKAHEAD && s.strm.avail_in !== 0); | ||||
/* If the WIN_INIT bytes after the end of the current data have never been | ||||
* written, then zero those bytes in order to avoid memory check reports of | ||||
* the use of uninitialized (or uninitialised as Julian writes) bytes by | ||||
* the longest match routines. Update the high water mark for the next | ||||
* time through here. WIN_INIT is set to MAX_MATCH since the longest match | ||||
* routines allow scanning to strstart + MAX_MATCH, ignoring lookahead. | ||||
*/ | ||||
// if (s.high_water < s.window_size) { | ||||
// var curr = s.strstart + s.lookahead; | ||||
// var init = 0; | ||||
// | ||||
// if (s.high_water < curr) { | ||||
// /* Previous high water mark below current data -- zero WIN_INIT | ||||
// * bytes or up to end of window, whichever is less. | ||||
// */ | ||||
// init = s.window_size - curr; | ||||
// if (init > WIN_INIT) | ||||
// init = WIN_INIT; | ||||
// zmemzero(s->window + curr, (unsigned)init); | ||||
// s->high_water = curr + init; | ||||
// } | ||||
// else if (s->high_water < (ulg)curr + WIN_INIT) { | ||||
// /* High water mark at or above current data, but below current data | ||||
// * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up | ||||
// * to end of window, whichever is less. | ||||
// */ | ||||
// init = (ulg)curr + WIN_INIT - s->high_water; | ||||
// if (init > s->window_size - s->high_water) | ||||
// init = s->window_size - s->high_water; | ||||
// zmemzero(s->window + s->high_water, (unsigned)init); | ||||
// s->high_water += init; | ||||
// } | ||||
// } | ||||
// | ||||
// Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD, | ||||
// "not enough room for search"); | ||||
} | ||||
/* =========================================================================== | ||||
* Copy without compression as much as possible from the input stream, return | ||||
* the current block state. | ||||
* This function does not insert new strings in the dictionary since | ||||
* uncompressible data is probably not useful. This function is used | ||||
* only for the level=0 compression option. | ||||
* NOTE: this function should be optimized to avoid extra copying from | ||||
* window to pending_buf. | ||||
*/ | ||||
function deflate_stored(s, flush) { | ||||
/* Stored blocks are limited to 0xffff bytes, pending_buf is limited | ||||
* to pending_buf_size, and each stored block has a 5 byte header: | ||||
*/ | ||||
var max_block_size = 0xffff; | ||||
if (max_block_size > s.pending_buf_size - 5) { | ||||
max_block_size = s.pending_buf_size - 5; | ||||
} | ||||
/* Copy as much as possible from input to output: */ | ||||
for (;;) { | ||||
/* Fill the window as much as possible: */ | ||||
if (s.lookahead <= 1) { | ||||
//Assert(s->strstart < s->w_size+MAX_DIST(s) || | ||||
// s->block_start >= (long)s->w_size, "slide too late"); | ||||
// if (!(s.strstart < s.w_size + (s.w_size - MIN_LOOKAHEAD) || | ||||
// s.block_start >= s.w_size)) { | ||||
// throw new Error("slide too late"); | ||||
// } | ||||
fill_window(s); | ||||
if (s.lookahead === 0 && flush === Z_NO_FLUSH) { | ||||
return BS_NEED_MORE; | ||||
} | ||||
if (s.lookahead === 0) { | ||||
break; | ||||
} | ||||
/* flush the current block */ | ||||
} | ||||
//Assert(s->block_start >= 0L, "block gone"); | ||||
// if (s.block_start < 0) throw new Error("block gone"); | ||||
s.strstart += s.lookahead; | ||||
s.lookahead = 0; | ||||
/* Emit a stored block if pending_buf will be full: */ | ||||
var max_start = s.block_start + max_block_size; | ||||
if (s.strstart === 0 || s.strstart >= max_start) { | ||||
/* strstart == 0 is possible when wraparound on 16-bit machine */ | ||||
s.lookahead = s.strstart - max_start; | ||||
s.strstart = max_start; | ||||
/*** FLUSH_BLOCK(s, 0); ***/ | ||||
flush_block_only(s, false); | ||||
if (s.strm.avail_out === 0) { | ||||
return BS_NEED_MORE; | ||||
} | ||||
/***/ | ||||
} | ||||
/* Flush if we may have to slide, otherwise block_start may become | ||||
* negative and the data will be gone: | ||||
*/ | ||||
if (s.strstart - s.block_start >= (s.w_size - MIN_LOOKAHEAD)) { | ||||
/*** FLUSH_BLOCK(s, 0); ***/ | ||||
flush_block_only(s, false); | ||||
if (s.strm.avail_out === 0) { | ||||
return BS_NEED_MORE; | ||||
} | ||||
/***/ | ||||
} | ||||
} | ||||
s.insert = 0; | ||||
if (flush === Z_FINISH) { | ||||
/*** FLUSH_BLOCK(s, 1); ***/ | ||||
flush_block_only(s, true); | ||||
if (s.strm.avail_out === 0) { | ||||
return BS_FINISH_STARTED; | ||||
} | ||||
/***/ | ||||
return BS_FINISH_DONE; | ||||
} | ||||
if (s.strstart > s.block_start) { | ||||
/*** FLUSH_BLOCK(s, 0); ***/ | ||||
flush_block_only(s, false); | ||||
if (s.strm.avail_out === 0) { | ||||
return BS_NEED_MORE; | ||||
} | ||||
/***/ | ||||
} | ||||
return BS_NEED_MORE; | ||||
} | ||||
/* =========================================================================== | ||||
* Compress as much as possible from the input stream, return the current | ||||
* block state. | ||||
* This function does not perform lazy evaluation of matches and inserts | ||||
* new strings in the dictionary only for unmatched strings or for short | ||||
* matches. It is used only for the fast compression options. | ||||
*/ | ||||
function deflate_fast(s, flush) { | ||||
var hash_head; /* head of the hash chain */ | ||||
var bflush; /* set if current block must be flushed */ | ||||
for (;;) { | ||||
/* Make sure that we always have enough lookahead, except | ||||
* at the end of the input file. We need MAX_MATCH bytes | ||||
* for the next match, plus MIN_MATCH bytes to insert the | ||||
* string following the next match. | ||||
*/ | ||||
if (s.lookahead < MIN_LOOKAHEAD) { | ||||
fill_window(s); | ||||
if (s.lookahead < MIN_LOOKAHEAD && flush === Z_NO_FLUSH) { | ||||
return BS_NEED_MORE; | ||||
} | ||||
if (s.lookahead === 0) { | ||||
break; /* flush the current block */ | ||||
} | ||||
} | ||||
/* Insert the string window[strstart .. strstart+2] in the | ||||
* dictionary, and set hash_head to the head of the hash chain: | ||||
*/ | ||||
hash_head = 0/*NIL*/; | ||||
if (s.lookahead >= MIN_MATCH) { | ||||
/*** INSERT_STRING(s, s.strstart, hash_head); ***/ | ||||
s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask; | ||||
hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h]; | ||||
s.head[s.ins_h] = s.strstart; | ||||
/***/ | ||||
} | ||||
/* Find the longest match, discarding those <= prev_length. | ||||
* At this point we have always match_length < MIN_MATCH | ||||
*/ | ||||
if (hash_head !== 0/*NIL*/ && ((s.strstart - hash_head) <= (s.w_size - MIN_LOOKAHEAD))) { | ||||
/* To simplify the code, we prevent matches with the string | ||||
* of window index 0 (in particular we have to avoid a match | ||||
* of the string with itself at the start of the input file). | ||||
*/ | ||||
s.match_length = longest_match(s, hash_head); | ||||
/* longest_match() sets match_start */ | ||||
} | ||||
if (s.match_length >= MIN_MATCH) { | ||||
// check_match(s, s.strstart, s.match_start, s.match_length); // for debug only | ||||
/*** _tr_tally_dist(s, s.strstart - s.match_start, | ||||
s.match_length - MIN_MATCH, bflush); ***/ | ||||
bflush = trees._tr_tally(s, s.strstart - s.match_start, s.match_length - MIN_MATCH); | ||||
s.lookahead -= s.match_length; | ||||
/* Insert new strings in the hash table only if the match length | ||||
* is not too large. This saves time but degrades compression. | ||||
*/ | ||||
if (s.match_length <= s.max_lazy_match/*max_insert_length*/ && s.lookahead >= MIN_MATCH) { | ||||
s.match_length--; /* string at strstart already in table */ | ||||
do { | ||||
s.strstart++; | ||||
/*** INSERT_STRING(s, s.strstart, hash_head); ***/ | ||||
s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask; | ||||
hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h]; | ||||
s.head[s.ins_h] = s.strstart; | ||||
/***/ | ||||
/* strstart never exceeds WSIZE-MAX_MATCH, so there are | ||||
* always MIN_MATCH bytes ahead. | ||||
*/ | ||||
} while (--s.match_length !== 0); | ||||
s.strstart++; | ||||
} else | ||||
{ | ||||
s.strstart += s.match_length; | ||||
s.match_length = 0; | ||||
s.ins_h = s.window[s.strstart]; | ||||
/* UPDATE_HASH(s, s.ins_h, s.window[s.strstart+1]); */ | ||||
s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + 1]) & s.hash_mask; | ||||
//#if MIN_MATCH != 3 | ||||
// Call UPDATE_HASH() MIN_MATCH-3 more times | ||||
//#endif | ||||
/* If lookahead < MIN_MATCH, ins_h is garbage, but it does not | ||||
* matter since it will be recomputed at next deflate call. | ||||
*/ | ||||
} | ||||
} else { | ||||
/* No match, output a literal byte */ | ||||
//Tracevv((stderr,"%c", s.window[s.strstart])); | ||||
/*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/ | ||||
bflush = trees._tr_tally(s, 0, s.window[s.strstart]); | ||||
s.lookahead--; | ||||
s.strstart++; | ||||
} | ||||
if (bflush) { | ||||
/*** FLUSH_BLOCK(s, 0); ***/ | ||||
flush_block_only(s, false); | ||||
if (s.strm.avail_out === 0) { | ||||
return BS_NEED_MORE; | ||||
} | ||||
/***/ | ||||
} | ||||
} | ||||
s.insert = ((s.strstart < (MIN_MATCH - 1)) ? s.strstart : MIN_MATCH - 1); | ||||
if (flush === Z_FINISH) { | ||||
/*** FLUSH_BLOCK(s, 1); ***/ | ||||
flush_block_only(s, true); | ||||
if (s.strm.avail_out === 0) { | ||||
return BS_FINISH_STARTED; | ||||
} | ||||
/***/ | ||||
return BS_FINISH_DONE; | ||||
} | ||||
if (s.last_lit) { | ||||
/*** FLUSH_BLOCK(s, 0); ***/ | ||||
flush_block_only(s, false); | ||||
if (s.strm.avail_out === 0) { | ||||
return BS_NEED_MORE; | ||||
} | ||||
/***/ | ||||
} | ||||
return BS_BLOCK_DONE; | ||||
} | ||||
/* =========================================================================== | ||||
* Same as above, but achieves better compression. We use a lazy | ||||
* evaluation for matches: a match is finally adopted only if there is | ||||
* no better match at the next window position. | ||||
*/ | ||||
function deflate_slow(s, flush) { | ||||
var hash_head; /* head of hash chain */ | ||||
var bflush; /* set if current block must be flushed */ | ||||
var max_insert; | ||||
/* Process the input block. */ | ||||
for (;;) { | ||||
/* Make sure that we always have enough lookahead, except | ||||
* at the end of the input file. We need MAX_MATCH bytes | ||||
* for the next match, plus MIN_MATCH bytes to insert the | ||||
* string following the next match. | ||||
*/ | ||||
if (s.lookahead < MIN_LOOKAHEAD) { | ||||
fill_window(s); | ||||
if (s.lookahead < MIN_LOOKAHEAD && flush === Z_NO_FLUSH) { | ||||
return BS_NEED_MORE; | ||||
} | ||||
if (s.lookahead === 0) { break; } /* flush the current block */ | ||||
} | ||||
/* Insert the string window[strstart .. strstart+2] in the | ||||
* dictionary, and set hash_head to the head of the hash chain: | ||||
*/ | ||||
hash_head = 0/*NIL*/; | ||||
if (s.lookahead >= MIN_MATCH) { | ||||
/*** INSERT_STRING(s, s.strstart, hash_head); ***/ | ||||
s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask; | ||||
hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h]; | ||||
s.head[s.ins_h] = s.strstart; | ||||
/***/ | ||||
} | ||||
/* Find the longest match, discarding those <= prev_length. | ||||
*/ | ||||
s.prev_length = s.match_length; | ||||
s.prev_match = s.match_start; | ||||
s.match_length = MIN_MATCH - 1; | ||||
if (hash_head !== 0/*NIL*/ && s.prev_length < s.max_lazy_match && | ||||
s.strstart - hash_head <= (s.w_size - MIN_LOOKAHEAD)/*MAX_DIST(s)*/) { | ||||
/* To simplify the code, we prevent matches with the string | ||||
* of window index 0 (in particular we have to avoid a match | ||||
* of the string with itself at the start of the input file). | ||||
*/ | ||||
s.match_length = longest_match(s, hash_head); | ||||
/* longest_match() sets match_start */ | ||||
if (s.match_length <= 5 && | ||||
(s.strategy === Z_FILTERED || (s.match_length === MIN_MATCH && s.strstart - s.match_start > 4096/*TOO_FAR*/))) { | ||||
/* If prev_match is also MIN_MATCH, match_start is garbage | ||||
* but we will ignore the current match anyway. | ||||
*/ | ||||
s.match_length = MIN_MATCH - 1; | ||||
} | ||||
} | ||||
/* If there was a match at the previous step and the current | ||||
* match is not better, output the previous match: | ||||
*/ | ||||
if (s.prev_length >= MIN_MATCH && s.match_length <= s.prev_length) { | ||||
max_insert = s.strstart + s.lookahead - MIN_MATCH; | ||||
/* Do not insert strings in hash table beyond this. */ | ||||
//check_match(s, s.strstart-1, s.prev_match, s.prev_length); | ||||
/***_tr_tally_dist(s, s.strstart - 1 - s.prev_match, | ||||
s.prev_length - MIN_MATCH, bflush);***/ | ||||
bflush = trees._tr_tally(s, s.strstart - 1 - s.prev_match, s.prev_length - MIN_MATCH); | ||||
/* Insert in hash table all strings up to the end of the match. | ||||
* strstart-1 and strstart are already inserted. If there is not | ||||
* enough lookahead, the last two strings are not inserted in | ||||
* the hash table. | ||||
*/ | ||||
s.lookahead -= s.prev_length - 1; | ||||
s.prev_length -= 2; | ||||
do { | ||||
if (++s.strstart <= max_insert) { | ||||
/*** INSERT_STRING(s, s.strstart, hash_head); ***/ | ||||
s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask; | ||||
hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h]; | ||||
s.head[s.ins_h] = s.strstart; | ||||
/***/ | ||||
} | ||||
} while (--s.prev_length !== 0); | ||||
s.match_available = 0; | ||||
s.match_length = MIN_MATCH - 1; | ||||
s.strstart++; | ||||
if (bflush) { | ||||
/*** FLUSH_BLOCK(s, 0); ***/ | ||||
flush_block_only(s, false); | ||||
if (s.strm.avail_out === 0) { | ||||
return BS_NEED_MORE; | ||||
} | ||||
/***/ | ||||
} | ||||
} else if (s.match_available) { | ||||
/* If there was no match at the previous position, output a | ||||
* single literal. If there was a match but the current match | ||||
* is longer, truncate the previous match to a single literal. | ||||
*/ | ||||
//Tracevv((stderr,"%c", s->window[s->strstart-1])); | ||||
/*** _tr_tally_lit(s, s.window[s.strstart-1], bflush); ***/ | ||||
bflush = trees._tr_tally(s, 0, s.window[s.strstart - 1]); | ||||
if (bflush) { | ||||
/*** FLUSH_BLOCK_ONLY(s, 0) ***/ | ||||
flush_block_only(s, false); | ||||
/***/ | ||||
} | ||||
s.strstart++; | ||||
s.lookahead--; | ||||
if (s.strm.avail_out === 0) { | ||||
return BS_NEED_MORE; | ||||
} | ||||
} else { | ||||
/* There is no previous match to compare with, wait for | ||||
* the next step to decide. | ||||
*/ | ||||
s.match_available = 1; | ||||
s.strstart++; | ||||
s.lookahead--; | ||||
} | ||||
} | ||||
//Assert (flush != Z_NO_FLUSH, "no flush?"); | ||||
if (s.match_available) { | ||||
//Tracevv((stderr,"%c", s->window[s->strstart-1])); | ||||
/*** _tr_tally_lit(s, s.window[s.strstart-1], bflush); ***/ | ||||
bflush = trees._tr_tally(s, 0, s.window[s.strstart - 1]); | ||||
s.match_available = 0; | ||||
} | ||||
s.insert = s.strstart < MIN_MATCH - 1 ? s.strstart : MIN_MATCH - 1; | ||||
if (flush === Z_FINISH) { | ||||
/*** FLUSH_BLOCK(s, 1); ***/ | ||||
flush_block_only(s, true); | ||||
if (s.strm.avail_out === 0) { | ||||
return BS_FINISH_STARTED; | ||||
} | ||||
/***/ | ||||
return BS_FINISH_DONE; | ||||
} | ||||
if (s.last_lit) { | ||||
/*** FLUSH_BLOCK(s, 0); ***/ | ||||
flush_block_only(s, false); | ||||
if (s.strm.avail_out === 0) { | ||||
return BS_NEED_MORE; | ||||
} | ||||
/***/ | ||||
} | ||||
return BS_BLOCK_DONE; | ||||
} | ||||
/* =========================================================================== | ||||
* For Z_RLE, simply look for runs of bytes, generate matches only of distance | ||||
* one. Do not maintain a hash table. (It will be regenerated if this run of | ||||
* deflate switches away from Z_RLE.) | ||||
*/ | ||||
function deflate_rle(s, flush) { | ||||
var bflush; /* set if current block must be flushed */ | ||||
var prev; /* byte at distance one to match */ | ||||
var scan, strend; /* scan goes up to strend for length of run */ | ||||
var _win = s.window; | ||||
for (;;) { | ||||
/* Make sure that we always have enough lookahead, except | ||||
* at the end of the input file. We need MAX_MATCH bytes | ||||
* for the longest run, plus one for the unrolled loop. | ||||
*/ | ||||
if (s.lookahead <= MAX_MATCH) { | ||||
fill_window(s); | ||||
if (s.lookahead <= MAX_MATCH && flush === Z_NO_FLUSH) { | ||||
return BS_NEED_MORE; | ||||
} | ||||
if (s.lookahead === 0) { break; } /* flush the current block */ | ||||
} | ||||
/* See how many times the previous byte repeats */ | ||||
s.match_length = 0; | ||||
if (s.lookahead >= MIN_MATCH && s.strstart > 0) { | ||||
scan = s.strstart - 1; | ||||
prev = _win[scan]; | ||||
if (prev === _win[++scan] && prev === _win[++scan] && prev === _win[++scan]) { | ||||
strend = s.strstart + MAX_MATCH; | ||||
do { | ||||
/*jshint noempty:false*/ | ||||
} while (prev === _win[++scan] && prev === _win[++scan] && | ||||
prev === _win[++scan] && prev === _win[++scan] && | ||||
prev === _win[++scan] && prev === _win[++scan] && | ||||
prev === _win[++scan] && prev === _win[++scan] && | ||||
scan < strend); | ||||
s.match_length = MAX_MATCH - (strend - scan); | ||||
if (s.match_length > s.lookahead) { | ||||
s.match_length = s.lookahead; | ||||
} | ||||
} | ||||
//Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan"); | ||||
} | ||||
/* Emit match if have run of MIN_MATCH or longer, else emit literal */ | ||||
if (s.match_length >= MIN_MATCH) { | ||||
//check_match(s, s.strstart, s.strstart - 1, s.match_length); | ||||
/*** _tr_tally_dist(s, 1, s.match_length - MIN_MATCH, bflush); ***/ | ||||
bflush = trees._tr_tally(s, 1, s.match_length - MIN_MATCH); | ||||
s.lookahead -= s.match_length; | ||||
s.strstart += s.match_length; | ||||
s.match_length = 0; | ||||
} else { | ||||
/* No match, output a literal byte */ | ||||
//Tracevv((stderr,"%c", s->window[s->strstart])); | ||||
/*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/ | ||||
bflush = trees._tr_tally(s, 0, s.window[s.strstart]); | ||||
s.lookahead--; | ||||
s.strstart++; | ||||
} | ||||
if (bflush) { | ||||
/*** FLUSH_BLOCK(s, 0); ***/ | ||||
flush_block_only(s, false); | ||||
if (s.strm.avail_out === 0) { | ||||
return BS_NEED_MORE; | ||||
} | ||||
/***/ | ||||
} | ||||
} | ||||
s.insert = 0; | ||||
if (flush === Z_FINISH) { | ||||
/*** FLUSH_BLOCK(s, 1); ***/ | ||||
flush_block_only(s, true); | ||||
if (s.strm.avail_out === 0) { | ||||
return BS_FINISH_STARTED; | ||||
} | ||||
/***/ | ||||
return BS_FINISH_DONE; | ||||
} | ||||
if (s.last_lit) { | ||||
/*** FLUSH_BLOCK(s, 0); ***/ | ||||
flush_block_only(s, false); | ||||
if (s.strm.avail_out === 0) { | ||||
return BS_NEED_MORE; | ||||
} | ||||
/***/ | ||||
} | ||||
return BS_BLOCK_DONE; | ||||
} | ||||
/* =========================================================================== | ||||
* For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table. | ||||
* (It will be regenerated if this run of deflate switches away from Huffman.) | ||||
*/ | ||||
function deflate_huff(s, flush) { | ||||
var bflush; /* set if current block must be flushed */ | ||||
for (;;) { | ||||
/* Make sure that we have a literal to write. */ | ||||
if (s.lookahead === 0) { | ||||
fill_window(s); | ||||
if (s.lookahead === 0) { | ||||
if (flush === Z_NO_FLUSH) { | ||||
return BS_NEED_MORE; | ||||
} | ||||
break; /* flush the current block */ | ||||
} | ||||
} | ||||
/* Output a literal byte */ | ||||
s.match_length = 0; | ||||
//Tracevv((stderr,"%c", s->window[s->strstart])); | ||||
/*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/ | ||||
bflush = trees._tr_tally(s, 0, s.window[s.strstart]); | ||||
s.lookahead--; | ||||
s.strstart++; | ||||
if (bflush) { | ||||
/*** FLUSH_BLOCK(s, 0); ***/ | ||||
flush_block_only(s, false); | ||||
if (s.strm.avail_out === 0) { | ||||
return BS_NEED_MORE; | ||||
} | ||||
/***/ | ||||
} | ||||
} | ||||
s.insert = 0; | ||||
if (flush === Z_FINISH) { | ||||
/*** FLUSH_BLOCK(s, 1); ***/ | ||||
flush_block_only(s, true); | ||||
if (s.strm.avail_out === 0) { | ||||
return BS_FINISH_STARTED; | ||||
} | ||||
/***/ | ||||
return BS_FINISH_DONE; | ||||
} | ||||
if (s.last_lit) { | ||||
/*** FLUSH_BLOCK(s, 0); ***/ | ||||
flush_block_only(s, false); | ||||
if (s.strm.avail_out === 0) { | ||||
return BS_NEED_MORE; | ||||
} | ||||
/***/ | ||||
} | ||||
return BS_BLOCK_DONE; | ||||
} | ||||
/* Values for max_lazy_match, good_match and max_chain_length, depending on | ||||
* the desired pack level (0..9). The values given below have been tuned to | ||||
* exclude worst case performance for pathological files. Better values may be | ||||
* found for specific files. | ||||
*/ | ||||
function Config(good_length, max_lazy, nice_length, max_chain, func) { | ||||
this.good_length = good_length; | ||||
this.max_lazy = max_lazy; | ||||
this.nice_length = nice_length; | ||||
this.max_chain = max_chain; | ||||
this.func = func; | ||||
} | ||||
var configuration_table; | ||||
configuration_table = [ | ||||
/* good lazy nice chain */ | ||||
new Config(0, 0, 0, 0, deflate_stored), /* 0 store only */ | ||||
new Config(4, 4, 8, 4, deflate_fast), /* 1 max speed, no lazy matches */ | ||||
new Config(4, 5, 16, 8, deflate_fast), /* 2 */ | ||||
new Config(4, 6, 32, 32, deflate_fast), /* 3 */ | ||||
new Config(4, 4, 16, 16, deflate_slow), /* 4 lazy matches */ | ||||
new Config(8, 16, 32, 32, deflate_slow), /* 5 */ | ||||
new Config(8, 16, 128, 128, deflate_slow), /* 6 */ | ||||
new Config(8, 32, 128, 256, deflate_slow), /* 7 */ | ||||
new Config(32, 128, 258, 1024, deflate_slow), /* 8 */ | ||||
new Config(32, 258, 258, 4096, deflate_slow) /* 9 max compression */ | ||||
]; | ||||
/* =========================================================================== | ||||
* Initialize the "longest match" routines for a new zlib stream | ||||
*/ | ||||
function lm_init(s) { | ||||
s.window_size = 2 * s.w_size; | ||||
/*** CLEAR_HASH(s); ***/ | ||||
zero(s.head); // Fill with NIL (= 0); | ||||
/* Set the default configuration parameters: | ||||
*/ | ||||
s.max_lazy_match = configuration_table[s.level].max_lazy; | ||||
s.good_match = configuration_table[s.level].good_length; | ||||
s.nice_match = configuration_table[s.level].nice_length; | ||||
s.max_chain_length = configuration_table[s.level].max_chain; | ||||
s.strstart = 0; | ||||
s.block_start = 0; | ||||
s.lookahead = 0; | ||||
s.insert = 0; | ||||
s.match_length = s.prev_length = MIN_MATCH - 1; | ||||
s.match_available = 0; | ||||
s.ins_h = 0; | ||||
} | ||||
function DeflateState() { | ||||
this.strm = null; /* pointer back to this zlib stream */ | ||||
this.status = 0; /* as the name implies */ | ||||
this.pending_buf = null; /* output still pending */ | ||||
this.pending_buf_size = 0; /* size of pending_buf */ | ||||
this.pending_out = 0; /* next pending byte to output to the stream */ | ||||
this.pending = 0; /* nb of bytes in the pending buffer */ | ||||
this.wrap = 0; /* bit 0 true for zlib, bit 1 true for gzip */ | ||||
this.gzhead = null; /* gzip header information to write */ | ||||
this.gzindex = 0; /* where in extra, name, or comment */ | ||||
this.method = Z_DEFLATED; /* can only be DEFLATED */ | ||||
this.last_flush = -1; /* value of flush param for previous deflate call */ | ||||
this.w_size = 0; /* LZ77 window size (32K by default) */ | ||||
this.w_bits = 0; /* log2(w_size) (8..16) */ | ||||
this.w_mask = 0; /* w_size - 1 */ | ||||
this.window = null; | ||||
/* Sliding window. Input bytes are read into the second half of the window, | ||||
* and move to the first half later to keep a dictionary of at least wSize | ||||
* bytes. With this organization, matches are limited to a distance of | ||||
* wSize-MAX_MATCH bytes, but this ensures that IO is always | ||||
* performed with a length multiple of the block size. | ||||
*/ | ||||
this.window_size = 0; | ||||
/* Actual size of window: 2*wSize, except when the user input buffer | ||||
* is directly used as sliding window. | ||||
*/ | ||||
this.prev = null; | ||||
/* Link to older string with same hash index. To limit the size of this | ||||
* array to 64K, this link is maintained only for the last 32K strings. | ||||
* An index in this array is thus a window index modulo 32K. | ||||
*/ | ||||
this.head = null; /* Heads of the hash chains or NIL. */ | ||||
this.ins_h = 0; /* hash index of string to be inserted */ | ||||
this.hash_size = 0; /* number of elements in hash table */ | ||||
this.hash_bits = 0; /* log2(hash_size) */ | ||||
this.hash_mask = 0; /* hash_size-1 */ | ||||
this.hash_shift = 0; | ||||
/* Number of bits by which ins_h must be shifted at each input | ||||
* step. It must be such that after MIN_MATCH steps, the oldest | ||||
* byte no longer takes part in the hash key, that is: | ||||
* hash_shift * MIN_MATCH >= hash_bits | ||||
*/ | ||||
this.block_start = 0; | ||||
/* Window position at the beginning of the current output block. Gets | ||||
* negative when the window is moved backwards. | ||||
*/ | ||||
this.match_length = 0; /* length of best match */ | ||||
this.prev_match = 0; /* previous match */ | ||||
this.match_available = 0; /* set if previous match exists */ | ||||
this.strstart = 0; /* start of string to insert */ | ||||
this.match_start = 0; /* start of matching string */ | ||||
this.lookahead = 0; /* number of valid bytes ahead in window */ | ||||
this.prev_length = 0; | ||||
/* Length of the best match at previous step. Matches not greater than this | ||||
* are discarded. This is used in the lazy match evaluation. | ||||
*/ | ||||
this.max_chain_length = 0; | ||||
/* To speed up deflation, hash chains are never searched beyond this | ||||
* length. A higher limit improves compression ratio but degrades the | ||||
* speed. | ||||
*/ | ||||
this.max_lazy_match = 0; | ||||
/* Attempt to find a better match only when the current match is strictly | ||||
* smaller than this value. This mechanism is used only for compression | ||||
* levels >= 4. | ||||
*/ | ||||
// That's alias to max_lazy_match, don't use directly | ||||
//this.max_insert_length = 0; | ||||
/* Insert new strings in the hash table only if the match length is not | ||||
* greater than this length. This saves time but degrades compression. | ||||
* max_insert_length is used only for compression levels <= 3. | ||||
*/ | ||||
this.level = 0; /* compression level (1..9) */ | ||||
this.strategy = 0; /* favor or force Huffman coding*/ | ||||
this.good_match = 0; | ||||
/* Use a faster search when the previous match is longer than this */ | ||||
this.nice_match = 0; /* Stop searching when current match exceeds this */ | ||||
/* used by trees.c: */ | ||||
/* Didn't use ct_data typedef below to suppress compiler warning */ | ||||
// struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */ | ||||
// struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */ | ||||
// struct ct_data_s bl_tree[2*BL_CODES+1]; /* Huffman tree for bit lengths */ | ||||
// Use flat array of DOUBLE size, with interleaved fata, | ||||
// because JS does not support effective | ||||
this.dyn_ltree = new utils.Buf16(HEAP_SIZE * 2); | ||||
this.dyn_dtree = new utils.Buf16((2 * D_CODES + 1) * 2); | ||||
this.bl_tree = new utils.Buf16((2 * BL_CODES + 1) * 2); | ||||
zero(this.dyn_ltree); | ||||
zero(this.dyn_dtree); | ||||
zero(this.bl_tree); | ||||
this.l_desc = null; /* desc. for literal tree */ | ||||
this.d_desc = null; /* desc. for distance tree */ | ||||
this.bl_desc = null; /* desc. for bit length tree */ | ||||
//ush bl_count[MAX_BITS+1]; | ||||
this.bl_count = new utils.Buf16(MAX_BITS + 1); | ||||
/* number of codes at each bit length for an optimal tree */ | ||||
//int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */ | ||||
this.heap = new utils.Buf16(2 * L_CODES + 1); /* heap used to build the Huffman trees */ | ||||
zero(this.heap); | ||||
this.heap_len = 0; /* number of elements in the heap */ | ||||
this.heap_max = 0; /* element of largest frequency */ | ||||
/* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used. | ||||
* The same heap array is used to build all trees. | ||||
*/ | ||||
this.depth = new utils.Buf16(2 * L_CODES + 1); //uch depth[2*L_CODES+1]; | ||||
zero(this.depth); | ||||
/* Depth of each subtree used as tie breaker for trees of equal frequency | ||||
*/ | ||||
this.l_buf = 0; /* buffer index for literals or lengths */ | ||||
this.lit_bufsize = 0; | ||||
/* Size of match buffer for literals/lengths. There are 4 reasons for | ||||
* limiting lit_bufsize to 64K: | ||||
* - frequencies can be kept in 16 bit counters | ||||
* - if compression is not successful for the first block, all input | ||||
* data is still in the window so we can still emit a stored block even | ||||
* when input comes from standard input. (This can also be done for | ||||
* all blocks if lit_bufsize is not greater than 32K.) | ||||
* - if compression is not successful for a file smaller than 64K, we can | ||||
* even emit a stored file instead of a stored block (saving 5 bytes). | ||||
* This is applicable only for zip (not gzip or zlib). | ||||
* - creating new Huffman trees less frequently may not provide fast | ||||
* adaptation to changes in the input data statistics. (Take for | ||||
* example a binary file with poorly compressible code followed by | ||||
* a highly compressible string table.) Smaller buffer sizes give | ||||
* fast adaptation but have of course the overhead of transmitting | ||||
* trees more frequently. | ||||
* - I can't count above 4 | ||||
*/ | ||||
this.last_lit = 0; /* running index in l_buf */ | ||||
this.d_buf = 0; | ||||
/* Buffer index for distances. To simplify the code, d_buf and l_buf have | ||||
* the same number of elements. To use different lengths, an extra flag | ||||
* array would be necessary. | ||||
*/ | ||||
this.opt_len = 0; /* bit length of current block with optimal trees */ | ||||
this.static_len = 0; /* bit length of current block with static trees */ | ||||
this.matches = 0; /* number of string matches in current block */ | ||||
this.insert = 0; /* bytes at end of window left to insert */ | ||||
this.bi_buf = 0; | ||||
/* Output buffer. bits are inserted starting at the bottom (least | ||||
* significant bits). | ||||
*/ | ||||
this.bi_valid = 0; | ||||
/* Number of valid bits in bi_buf. All bits above the last valid bit | ||||
* are always zero. | ||||
*/ | ||||
// Used for window memory init. We safely ignore it for JS. That makes | ||||
// sense only for pointers and memory check tools. | ||||
//this.high_water = 0; | ||||
/* High water mark offset in window for initialized bytes -- bytes above | ||||
* this are set to zero in order to avoid memory check warnings when | ||||
* longest match routines access bytes past the input. This is then | ||||
* updated to the new high water mark. | ||||
*/ | ||||
} | ||||
function deflateResetKeep(strm) { | ||||
var s; | ||||
if (!strm || !strm.state) { | ||||
return err(strm, Z_STREAM_ERROR); | ||||
} | ||||
strm.total_in = strm.total_out = 0; | ||||
strm.data_type = Z_UNKNOWN; | ||||
s = strm.state; | ||||
s.pending = 0; | ||||
s.pending_out = 0; | ||||
if (s.wrap < 0) { | ||||
s.wrap = -s.wrap; | ||||
/* was made negative by deflate(..., Z_FINISH); */ | ||||
} | ||||
s.status = (s.wrap ? INIT_STATE : BUSY_STATE); | ||||
strm.adler = (s.wrap === 2) ? | ||||
0 // crc32(0, Z_NULL, 0) | ||||
: | ||||
1; // adler32(0, Z_NULL, 0) | ||||
s.last_flush = Z_NO_FLUSH; | ||||
trees._tr_init(s); | ||||
return Z_OK; | ||||
} | ||||
function deflateReset(strm) { | ||||
var ret = deflateResetKeep(strm); | ||||
if (ret === Z_OK) { | ||||
lm_init(strm.state); | ||||
} | ||||
return ret; | ||||
} | ||||
function deflateSetHeader(strm, head) { | ||||
if (!strm || !strm.state) { return Z_STREAM_ERROR; } | ||||
if (strm.state.wrap !== 2) { return Z_STREAM_ERROR; } | ||||
strm.state.gzhead = head; | ||||
return Z_OK; | ||||
} | ||||
function deflateInit2(strm, level, method, windowBits, memLevel, strategy) { | ||||
if (!strm) { // === Z_NULL | ||||
return Z_STREAM_ERROR; | ||||
} | ||||
var wrap = 1; | ||||
if (level === Z_DEFAULT_COMPRESSION) { | ||||
level = 6; | ||||
} | ||||
if (windowBits < 0) { /* suppress zlib wrapper */ | ||||
wrap = 0; | ||||
windowBits = -windowBits; | ||||
} | ||||
else if (windowBits > 15) { | ||||
wrap = 2; /* write gzip wrapper instead */ | ||||
windowBits -= 16; | ||||
} | ||||
if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method !== Z_DEFLATED || | ||||
windowBits < 8 || windowBits > 15 || level < 0 || level > 9 || | ||||
strategy < 0 || strategy > Z_FIXED) { | ||||
return err(strm, Z_STREAM_ERROR); | ||||
} | ||||
if (windowBits === 8) { | ||||
windowBits = 9; | ||||
} | ||||
/* until 256-byte window bug fixed */ | ||||
var s = new DeflateState(); | ||||
strm.state = s; | ||||
s.strm = strm; | ||||
s.wrap = wrap; | ||||
s.gzhead = null; | ||||
s.w_bits = windowBits; | ||||
s.w_size = 1 << s.w_bits; | ||||
s.w_mask = s.w_size - 1; | ||||
s.hash_bits = memLevel + 7; | ||||
s.hash_size = 1 << s.hash_bits; | ||||
s.hash_mask = s.hash_size - 1; | ||||
s.hash_shift = ~~((s.hash_bits + MIN_MATCH - 1) / MIN_MATCH); | ||||
s.window = new utils.Buf8(s.w_size * 2); | ||||
s.head = new utils.Buf16(s.hash_size); | ||||
s.prev = new utils.Buf16(s.w_size); | ||||
// Don't need mem init magic for JS. | ||||
//s.high_water = 0; /* nothing written to s->window yet */ | ||||
s.lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ | ||||
s.pending_buf_size = s.lit_bufsize * 4; | ||||
//overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2); | ||||
//s->pending_buf = (uchf *) overlay; | ||||
s.pending_buf = new utils.Buf8(s.pending_buf_size); | ||||
// It is offset from `s.pending_buf` (size is `s.lit_bufsize * 2`) | ||||
//s->d_buf = overlay + s->lit_bufsize/sizeof(ush); | ||||
s.d_buf = 1 * s.lit_bufsize; | ||||
//s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize; | ||||
s.l_buf = (1 + 2) * s.lit_bufsize; | ||||
s.level = level; | ||||
s.strategy = strategy; | ||||
s.method = method; | ||||
return deflateReset(strm); | ||||
} | ||||
function deflateInit(strm, level) { | ||||
return deflateInit2(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, Z_DEFAULT_STRATEGY); | ||||
} | ||||
function deflate(strm, flush) { | ||||
var old_flush, s; | ||||
var beg, val; // for gzip header write only | ||||
if (!strm || !strm.state || | ||||
flush > Z_BLOCK || flush < 0) { | ||||
return strm ? err(strm, Z_STREAM_ERROR) : Z_STREAM_ERROR; | ||||
} | ||||
s = strm.state; | ||||
if (!strm.output || | ||||
(!strm.input && strm.avail_in !== 0) || | ||||
(s.status === FINISH_STATE && flush !== Z_FINISH)) { | ||||
return err(strm, (strm.avail_out === 0) ? Z_BUF_ERROR : Z_STREAM_ERROR); | ||||
} | ||||
s.strm = strm; /* just in case */ | ||||
old_flush = s.last_flush; | ||||
s.last_flush = flush; | ||||
/* Write the header */ | ||||
if (s.status === INIT_STATE) { | ||||
if (s.wrap === 2) { // GZIP header | ||||
strm.adler = 0; //crc32(0L, Z_NULL, 0); | ||||
put_byte(s, 31); | ||||
put_byte(s, 139); | ||||
put_byte(s, 8); | ||||
if (!s.gzhead) { // s->gzhead == Z_NULL | ||||
put_byte(s, 0); | ||||
put_byte(s, 0); | ||||
put_byte(s, 0); | ||||
put_byte(s, 0); | ||||
put_byte(s, 0); | ||||
put_byte(s, s.level === 9 ? 2 : | ||||
(s.strategy >= Z_HUFFMAN_ONLY || s.level < 2 ? | ||||
4 : 0)); | ||||
put_byte(s, OS_CODE); | ||||
s.status = BUSY_STATE; | ||||
} | ||||
else { | ||||
put_byte(s, (s.gzhead.text ? 1 : 0) + | ||||
(s.gzhead.hcrc ? 2 : 0) + | ||||
(!s.gzhead.extra ? 0 : 4) + | ||||
(!s.gzhead.name ? 0 : 8) + | ||||
(!s.gzhead.comment ? 0 : 16) | ||||
); | ||||
put_byte(s, s.gzhead.time & 0xff); | ||||
put_byte(s, (s.gzhead.time >> 8) & 0xff); | ||||
put_byte(s, (s.gzhead.time >> 16) & 0xff); | ||||
put_byte(s, (s.gzhead.time >> 24) & 0xff); | ||||
put_byte(s, s.level === 9 ? 2 : | ||||
(s.strategy >= Z_HUFFMAN_ONLY || s.level < 2 ? | ||||
4 : 0)); | ||||
put_byte(s, s.gzhead.os & 0xff); | ||||
if (s.gzhead.extra && s.gzhead.extra.length) { | ||||
put_byte(s, s.gzhead.extra.length & 0xff); | ||||
put_byte(s, (s.gzhead.extra.length >> 8) & 0xff); | ||||
} | ||||
if (s.gzhead.hcrc) { | ||||
strm.adler = crc32(strm.adler, s.pending_buf, s.pending, 0); | ||||
} | ||||
s.gzindex = 0; | ||||
s.status = EXTRA_STATE; | ||||
} | ||||
} | ||||
else // DEFLATE header | ||||
{ | ||||
var header = (Z_DEFLATED + ((s.w_bits - 8) << 4)) << 8; | ||||
var level_flags = -1; | ||||
if (s.strategy >= Z_HUFFMAN_ONLY || s.level < 2) { | ||||
level_flags = 0; | ||||
} else if (s.level < 6) { | ||||
level_flags = 1; | ||||
} else if (s.level === 6) { | ||||
level_flags = 2; | ||||
} else { | ||||
level_flags = 3; | ||||
} | ||||
header |= (level_flags << 6); | ||||
if (s.strstart !== 0) { header |= PRESET_DICT; } | ||||
header += 31 - (header % 31); | ||||
s.status = BUSY_STATE; | ||||
putShortMSB(s, header); | ||||
/* Save the adler32 of the preset dictionary: */ | ||||
if (s.strstart !== 0) { | ||||
putShortMSB(s, strm.adler >>> 16); | ||||
putShortMSB(s, strm.adler & 0xffff); | ||||
} | ||||
strm.adler = 1; // adler32(0L, Z_NULL, 0); | ||||
} | ||||
} | ||||
//#ifdef GZIP | ||||
if (s.status === EXTRA_STATE) { | ||||
if (s.gzhead.extra/* != Z_NULL*/) { | ||||
beg = s.pending; /* start of bytes to update crc */ | ||||
while (s.gzindex < (s.gzhead.extra.length & 0xffff)) { | ||||
if (s.pending === s.pending_buf_size) { | ||||
if (s.gzhead.hcrc && s.pending > beg) { | ||||
strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg); | ||||
} | ||||
flush_pending(strm); | ||||
beg = s.pending; | ||||
if (s.pending === s.pending_buf_size) { | ||||
break; | ||||
} | ||||
} | ||||
put_byte(s, s.gzhead.extra[s.gzindex] & 0xff); | ||||
s.gzindex++; | ||||
} | ||||
if (s.gzhead.hcrc && s.pending > beg) { | ||||
strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg); | ||||
} | ||||
if (s.gzindex === s.gzhead.extra.length) { | ||||
s.gzindex = 0; | ||||
s.status = NAME_STATE; | ||||
} | ||||
} | ||||
else { | ||||
s.status = NAME_STATE; | ||||
} | ||||
} | ||||
if (s.status === NAME_STATE) { | ||||
if (s.gzhead.name/* != Z_NULL*/) { | ||||
beg = s.pending; /* start of bytes to update crc */ | ||||
//int val; | ||||
do { | ||||
if (s.pending === s.pending_buf_size) { | ||||
if (s.gzhead.hcrc && s.pending > beg) { | ||||
strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg); | ||||
} | ||||
flush_pending(strm); | ||||
beg = s.pending; | ||||
if (s.pending === s.pending_buf_size) { | ||||
val = 1; | ||||
break; | ||||
} | ||||
} | ||||
// JS specific: little magic to add zero terminator to end of string | ||||
if (s.gzindex < s.gzhead.name.length) { | ||||
val = s.gzhead.name.charCodeAt(s.gzindex++) & 0xff; | ||||
} else { | ||||
val = 0; | ||||
} | ||||
put_byte(s, val); | ||||
} while (val !== 0); | ||||
if (s.gzhead.hcrc && s.pending > beg) { | ||||
strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg); | ||||
} | ||||
if (val === 0) { | ||||
s.gzindex = 0; | ||||
s.status = COMMENT_STATE; | ||||
} | ||||
} | ||||
else { | ||||
s.status = COMMENT_STATE; | ||||
} | ||||
} | ||||
if (s.status === COMMENT_STATE) { | ||||
if (s.gzhead.comment/* != Z_NULL*/) { | ||||
beg = s.pending; /* start of bytes to update crc */ | ||||
//int val; | ||||
do { | ||||
if (s.pending === s.pending_buf_size) { | ||||
if (s.gzhead.hcrc && s.pending > beg) { | ||||
strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg); | ||||
} | ||||
flush_pending(strm); | ||||
beg = s.pending; | ||||
if (s.pending === s.pending_buf_size) { | ||||
val = 1; | ||||
break; | ||||
} | ||||
} | ||||
// JS specific: little magic to add zero terminator to end of string | ||||
if (s.gzindex < s.gzhead.comment.length) { | ||||
val = s.gzhead.comment.charCodeAt(s.gzindex++) & 0xff; | ||||
} else { | ||||
val = 0; | ||||
} | ||||
put_byte(s, val); | ||||
} while (val !== 0); | ||||
if (s.gzhead.hcrc && s.pending > beg) { | ||||
strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg); | ||||
} | ||||
if (val === 0) { | ||||
s.status = HCRC_STATE; | ||||
} | ||||
} | ||||
else { | ||||
s.status = HCRC_STATE; | ||||
} | ||||
} | ||||
if (s.status === HCRC_STATE) { | ||||
if (s.gzhead.hcrc) { | ||||
if (s.pending + 2 > s.pending_buf_size) { | ||||
flush_pending(strm); | ||||
} | ||||
if (s.pending + 2 <= s.pending_buf_size) { | ||||
put_byte(s, strm.adler & 0xff); | ||||
put_byte(s, (strm.adler >> 8) & 0xff); | ||||
strm.adler = 0; //crc32(0L, Z_NULL, 0); | ||||
s.status = BUSY_STATE; | ||||
} | ||||
} | ||||
else { | ||||
s.status = BUSY_STATE; | ||||
} | ||||
} | ||||
//#endif | ||||
/* Flush as much pending output as possible */ | ||||
if (s.pending !== 0) { | ||||
flush_pending(strm); | ||||
if (strm.avail_out === 0) { | ||||
/* Since avail_out is 0, deflate will be called again with | ||||
* more output space, but possibly with both pending and | ||||
* avail_in equal to zero. There won't be anything to do, | ||||
* but this is not an error situation so make sure we | ||||
* return OK instead of BUF_ERROR at next call of deflate: | ||||
*/ | ||||
s.last_flush = -1; | ||||
return Z_OK; | ||||
} | ||||
/* Make sure there is something to do and avoid duplicate consecutive | ||||
* flushes. For repeated and useless calls with Z_FINISH, we keep | ||||
* returning Z_STREAM_END instead of Z_BUF_ERROR. | ||||
*/ | ||||
} else if (strm.avail_in === 0 && rank(flush) <= rank(old_flush) && | ||||
flush !== Z_FINISH) { | ||||
return err(strm, Z_BUF_ERROR); | ||||
} | ||||
/* User must not provide more input after the first FINISH: */ | ||||
if (s.status === FINISH_STATE && strm.avail_in !== 0) { | ||||
return err(strm, Z_BUF_ERROR); | ||||
} | ||||
/* Start a new block or continue the current one. | ||||
*/ | ||||
if (strm.avail_in !== 0 || s.lookahead !== 0 || | ||||
(flush !== Z_NO_FLUSH && s.status !== FINISH_STATE)) { | ||||
var bstate = (s.strategy === Z_HUFFMAN_ONLY) ? deflate_huff(s, flush) : | ||||
(s.strategy === Z_RLE ? deflate_rle(s, flush) : | ||||
configuration_table[s.level].func(s, flush)); | ||||
if (bstate === BS_FINISH_STARTED || bstate === BS_FINISH_DONE) { | ||||
s.status = FINISH_STATE; | ||||
} | ||||
if (bstate === BS_NEED_MORE || bstate === BS_FINISH_STARTED) { | ||||
if (strm.avail_out === 0) { | ||||
s.last_flush = -1; | ||||
/* avoid BUF_ERROR next call, see above */ | ||||
} | ||||
return Z_OK; | ||||
/* If flush != Z_NO_FLUSH && avail_out == 0, the next call | ||||
* of deflate should use the same flush parameter to make sure | ||||
* that the flush is complete. So we don't have to output an | ||||
* empty block here, this will be done at next call. This also | ||||
* ensures that for a very small output buffer, we emit at most | ||||
* one empty block. | ||||
*/ | ||||
} | ||||
if (bstate === BS_BLOCK_DONE) { | ||||
if (flush === Z_PARTIAL_FLUSH) { | ||||
trees._tr_align(s); | ||||
} | ||||
else if (flush !== Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */ | ||||
trees._tr_stored_block(s, 0, 0, false); | ||||
/* For a full flush, this empty block will be recognized | ||||
* as a special marker by inflate_sync(). | ||||
*/ | ||||
if (flush === Z_FULL_FLUSH) { | ||||
/*** CLEAR_HASH(s); ***/ /* forget history */ | ||||
zero(s.head); // Fill with NIL (= 0); | ||||
if (s.lookahead === 0) { | ||||
s.strstart = 0; | ||||
s.block_start = 0; | ||||
s.insert = 0; | ||||
} | ||||
} | ||||
} | ||||
flush_pending(strm); | ||||
if (strm.avail_out === 0) { | ||||
s.last_flush = -1; /* avoid BUF_ERROR at next call, see above */ | ||||
return Z_OK; | ||||
} | ||||
} | ||||
} | ||||
//Assert(strm->avail_out > 0, "bug2"); | ||||
//if (strm.avail_out <= 0) { throw new Error("bug2");} | ||||
if (flush !== Z_FINISH) { return Z_OK; } | ||||
if (s.wrap <= 0) { return Z_STREAM_END; } | ||||
/* Write the trailer */ | ||||
if (s.wrap === 2) { | ||||
put_byte(s, strm.adler & 0xff); | ||||
put_byte(s, (strm.adler >> 8) & 0xff); | ||||
put_byte(s, (strm.adler >> 16) & 0xff); | ||||
put_byte(s, (strm.adler >> 24) & 0xff); | ||||
put_byte(s, strm.total_in & 0xff); | ||||
put_byte(s, (strm.total_in >> 8) & 0xff); | ||||
put_byte(s, (strm.total_in >> 16) & 0xff); | ||||
put_byte(s, (strm.total_in >> 24) & 0xff); | ||||
} | ||||
else | ||||
{ | ||||
putShortMSB(s, strm.adler >>> 16); | ||||
putShortMSB(s, strm.adler & 0xffff); | ||||
} | ||||
flush_pending(strm); | ||||
/* If avail_out is zero, the application will call deflate again | ||||
* to flush the rest. | ||||
*/ | ||||
if (s.wrap > 0) { s.wrap = -s.wrap; } | ||||
/* write the trailer only once! */ | ||||
return s.pending !== 0 ? Z_OK : Z_STREAM_END; | ||||
} | ||||
function deflateEnd(strm) { | ||||
var status; | ||||
if (!strm/*== Z_NULL*/ || !strm.state/*== Z_NULL*/) { | ||||
return Z_STREAM_ERROR; | ||||
} | ||||
status = strm.state.status; | ||||
if (status !== INIT_STATE && | ||||
status !== EXTRA_STATE && | ||||
status !== NAME_STATE && | ||||
status !== COMMENT_STATE && | ||||
status !== HCRC_STATE && | ||||
status !== BUSY_STATE && | ||||
status !== FINISH_STATE | ||||
) { | ||||
return err(strm, Z_STREAM_ERROR); | ||||
} | ||||
strm.state = null; | ||||
return status === BUSY_STATE ? err(strm, Z_DATA_ERROR) : Z_OK; | ||||
} | ||||
/* ========================================================================= | ||||
* Initializes the compression dictionary from the given byte | ||||
* sequence without producing any compressed output. | ||||
*/ | ||||
function deflateSetDictionary(strm, dictionary) { | ||||
var dictLength = dictionary.length; | ||||
var s; | ||||
var str, n; | ||||
var wrap; | ||||
var avail; | ||||
var next; | ||||
var input; | ||||
var tmpDict; | ||||
if (!strm/*== Z_NULL*/ || !strm.state/*== Z_NULL*/) { | ||||
return Z_STREAM_ERROR; | ||||
} | ||||
s = strm.state; | ||||
wrap = s.wrap; | ||||
if (wrap === 2 || (wrap === 1 && s.status !== INIT_STATE) || s.lookahead) { | ||||
return Z_STREAM_ERROR; | ||||
} | ||||
/* when using zlib wrappers, compute Adler-32 for provided dictionary */ | ||||
if (wrap === 1) { | ||||
/* adler32(strm->adler, dictionary, dictLength); */ | ||||
strm.adler = adler32(strm.adler, dictionary, dictLength, 0); | ||||
} | ||||
s.wrap = 0; /* avoid computing Adler-32 in read_buf */ | ||||
/* if dictionary would fill window, just replace the history */ | ||||
if (dictLength >= s.w_size) { | ||||
if (wrap === 0) { /* already empty otherwise */ | ||||
/*** CLEAR_HASH(s); ***/ | ||||
zero(s.head); // Fill with NIL (= 0); | ||||
s.strstart = 0; | ||||
s.block_start = 0; | ||||
s.insert = 0; | ||||
} | ||||
/* use the tail */ | ||||
// dictionary = dictionary.slice(dictLength - s.w_size); | ||||
tmpDict = new utils.Buf8(s.w_size); | ||||
utils.arraySet(tmpDict, dictionary, dictLength - s.w_size, s.w_size, 0); | ||||
dictionary = tmpDict; | ||||
dictLength = s.w_size; | ||||
} | ||||
/* insert dictionary into window and hash */ | ||||
avail = strm.avail_in; | ||||
next = strm.next_in; | ||||
input = strm.input; | ||||
strm.avail_in = dictLength; | ||||
strm.next_in = 0; | ||||
strm.input = dictionary; | ||||
fill_window(s); | ||||
while (s.lookahead >= MIN_MATCH) { | ||||
str = s.strstart; | ||||
n = s.lookahead - (MIN_MATCH - 1); | ||||
do { | ||||
/* UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); */ | ||||
s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[str + MIN_MATCH - 1]) & s.hash_mask; | ||||
s.prev[str & s.w_mask] = s.head[s.ins_h]; | ||||
s.head[s.ins_h] = str; | ||||
str++; | ||||
} while (--n); | ||||
s.strstart = str; | ||||
s.lookahead = MIN_MATCH - 1; | ||||
fill_window(s); | ||||
} | ||||
s.strstart += s.lookahead; | ||||
s.block_start = s.strstart; | ||||
s.insert = s.lookahead; | ||||
s.lookahead = 0; | ||||
s.match_length = s.prev_length = MIN_MATCH - 1; | ||||
s.match_available = 0; | ||||
strm.next_in = next; | ||||
strm.input = input; | ||||
strm.avail_in = avail; | ||||
s.wrap = wrap; | ||||
return Z_OK; | ||||
} | ||||
exports.deflateInit = deflateInit; | ||||
exports.deflateInit2 = deflateInit2; | ||||
exports.deflateReset = deflateReset; | ||||
exports.deflateResetKeep = deflateResetKeep; | ||||
exports.deflateSetHeader = deflateSetHeader; | ||||
exports.deflate = deflate; | ||||
exports.deflateEnd = deflateEnd; | ||||
exports.deflateSetDictionary = deflateSetDictionary; | ||||
exports.deflateInfo = 'pako deflate (from Nodeca project)'; | ||||
/* Not implemented | ||||
exports.deflateBound = deflateBound; | ||||
exports.deflateCopy = deflateCopy; | ||||
exports.deflateParams = deflateParams; | ||||
exports.deflatePending = deflatePending; | ||||
exports.deflatePrime = deflatePrime; | ||||
exports.deflateTune = deflateTune; | ||||
*/ | ||||