Show More
Commit Description:
utf8mb4
Commit Description:
utf8mb4
References:
File last commit:
Show/Diff file:
Action:
node_modules/pako/dist/pako_deflate.js
| 3878 lines
| 119.2 KiB
| application/javascript
| JavascriptLexer
|
r789 | /* pako 0.2.9 nodeca/pako */(function(f){if(typeof exports==="object"&&typeof module!=="undefined"){module.exports=f()}else if(typeof define==="function"&&define.amd){define([],f)}else{var g;if(typeof window!=="undefined"){g=window}else if(typeof global!=="undefined"){g=global}else if(typeof self!=="undefined"){g=self}else{g=this}g.pako = f()}})(function(){var define,module,exports;return (function e(t,n,r){function s(o,u){if(!n[o]){if(!t[o]){var a=typeof require=="function"&&require;if(!u&&a)return a(o,!0);if(i)return i(o,!0);var f=new Error("Cannot find module '"+o+"'");throw f.code="MODULE_NOT_FOUND",f}var l=n[o]={exports:{}};t[o][0].call(l.exports,function(e){var n=t[o][1][e];return s(n?n:e)},l,l.exports,e,t,n,r)}return n[o].exports}var i=typeof require=="function"&&require;for(var o=0;o<r.length;o++)s(r[o]);return s})({1:[function(require,module,exports){ | ||
'use strict'; | |||
var TYPED_OK = (typeof Uint8Array !== 'undefined') && | |||
(typeof Uint16Array !== 'undefined') && | |||
(typeof Int32Array !== 'undefined'); | |||
exports.assign = function (obj /*from1, from2, from3, ...*/) { | |||
var sources = Array.prototype.slice.call(arguments, 1); | |||
while (sources.length) { | |||
var source = sources.shift(); | |||
if (!source) { continue; } | |||
if (typeof source !== 'object') { | |||
throw new TypeError(source + 'must be non-object'); | |||
} | |||
for (var p in source) { | |||
if (source.hasOwnProperty(p)) { | |||
obj[p] = source[p]; | |||
} | |||
} | |||
} | |||
return obj; | |||
}; | |||
// reduce buffer size, avoiding mem copy | |||
exports.shrinkBuf = function (buf, size) { | |||
if (buf.length === size) { return buf; } | |||
if (buf.subarray) { return buf.subarray(0, size); } | |||
buf.length = size; | |||
return buf; | |||
}; | |||
var fnTyped = { | |||
arraySet: function (dest, src, src_offs, len, dest_offs) { | |||
if (src.subarray && dest.subarray) { | |||
dest.set(src.subarray(src_offs, src_offs + len), dest_offs); | |||
return; | |||
} | |||
// Fallback to ordinary array | |||
for (var i = 0; i < len; i++) { | |||
dest[dest_offs + i] = src[src_offs + i]; | |||
} | |||
}, | |||
// Join array of chunks to single array. | |||
flattenChunks: function (chunks) { | |||
var i, l, len, pos, chunk, result; | |||
// calculate data length | |||
len = 0; | |||
for (i = 0, l = chunks.length; i < l; i++) { | |||
len += chunks[i].length; | |||
} | |||
// join chunks | |||
result = new Uint8Array(len); | |||
pos = 0; | |||
for (i = 0, l = chunks.length; i < l; i++) { | |||
chunk = chunks[i]; | |||
result.set(chunk, pos); | |||
pos += chunk.length; | |||
} | |||
return result; | |||
} | |||
}; | |||
var fnUntyped = { | |||
arraySet: function (dest, src, src_offs, len, dest_offs) { | |||
for (var i = 0; i < len; i++) { | |||
dest[dest_offs + i] = src[src_offs + i]; | |||
} | |||
}, | |||
// Join array of chunks to single array. | |||
flattenChunks: function (chunks) { | |||
return [].concat.apply([], chunks); | |||
} | |||
}; | |||
// Enable/Disable typed arrays use, for testing | |||
// | |||
exports.setTyped = function (on) { | |||
if (on) { | |||
exports.Buf8 = Uint8Array; | |||
exports.Buf16 = Uint16Array; | |||
exports.Buf32 = Int32Array; | |||
exports.assign(exports, fnTyped); | |||
} else { | |||
exports.Buf8 = Array; | |||
exports.Buf16 = Array; | |||
exports.Buf32 = Array; | |||
exports.assign(exports, fnUntyped); | |||
} | |||
}; | |||
exports.setTyped(TYPED_OK); | |||
},{}],2:[function(require,module,exports){ | |||
// String encode/decode helpers | |||
'use strict'; | |||
var utils = require('./common'); | |||
// Quick check if we can use fast array to bin string conversion | |||
// | |||
// - apply(Array) can fail on Android 2.2 | |||
// - apply(Uint8Array) can fail on iOS 5.1 Safary | |||
// | |||
var STR_APPLY_OK = true; | |||
var STR_APPLY_UIA_OK = true; | |||
try { String.fromCharCode.apply(null, [ 0 ]); } catch (__) { STR_APPLY_OK = false; } | |||
try { String.fromCharCode.apply(null, new Uint8Array(1)); } catch (__) { STR_APPLY_UIA_OK = false; } | |||
// Table with utf8 lengths (calculated by first byte of sequence) | |||
// Note, that 5 & 6-byte values and some 4-byte values can not be represented in JS, | |||
// because max possible codepoint is 0x10ffff | |||
var _utf8len = new utils.Buf8(256); | |||
for (var q = 0; q < 256; q++) { | |||
_utf8len[q] = (q >= 252 ? 6 : q >= 248 ? 5 : q >= 240 ? 4 : q >= 224 ? 3 : q >= 192 ? 2 : 1); | |||
} | |||
_utf8len[254] = _utf8len[254] = 1; // Invalid sequence start | |||
// convert string to array (typed, when possible) | |||
exports.string2buf = function (str) { | |||
var buf, c, c2, m_pos, i, str_len = str.length, buf_len = 0; | |||
// count binary size | |||
for (m_pos = 0; m_pos < str_len; m_pos++) { | |||
c = str.charCodeAt(m_pos); | |||
if ((c & 0xfc00) === 0xd800 && (m_pos + 1 < str_len)) { | |||
c2 = str.charCodeAt(m_pos + 1); | |||
if ((c2 & 0xfc00) === 0xdc00) { | |||
c = 0x10000 + ((c - 0xd800) << 10) + (c2 - 0xdc00); | |||
m_pos++; | |||
} | |||
} | |||
buf_len += c < 0x80 ? 1 : c < 0x800 ? 2 : c < 0x10000 ? 3 : 4; | |||
} | |||
// allocate buffer | |||
buf = new utils.Buf8(buf_len); | |||
// convert | |||
for (i = 0, m_pos = 0; i < buf_len; m_pos++) { | |||
c = str.charCodeAt(m_pos); | |||
if ((c & 0xfc00) === 0xd800 && (m_pos + 1 < str_len)) { | |||
c2 = str.charCodeAt(m_pos + 1); | |||
if ((c2 & 0xfc00) === 0xdc00) { | |||
c = 0x10000 + ((c - 0xd800) << 10) + (c2 - 0xdc00); | |||
m_pos++; | |||
} | |||
} | |||
if (c < 0x80) { | |||
/* one byte */ | |||
buf[i++] = c; | |||
} else if (c < 0x800) { | |||
/* two bytes */ | |||
buf[i++] = 0xC0 | (c >>> 6); | |||
buf[i++] = 0x80 | (c & 0x3f); | |||
} else if (c < 0x10000) { | |||
/* three bytes */ | |||
buf[i++] = 0xE0 | (c >>> 12); | |||
buf[i++] = 0x80 | (c >>> 6 & 0x3f); | |||
buf[i++] = 0x80 | (c & 0x3f); | |||
} else { | |||
/* four bytes */ | |||
buf[i++] = 0xf0 | (c >>> 18); | |||
buf[i++] = 0x80 | (c >>> 12 & 0x3f); | |||
buf[i++] = 0x80 | (c >>> 6 & 0x3f); | |||
buf[i++] = 0x80 | (c & 0x3f); | |||
} | |||
} | |||
return buf; | |||
}; | |||
// Helper (used in 2 places) | |||
function buf2binstring(buf, len) { | |||
// use fallback for big arrays to avoid stack overflow | |||
if (len < 65537) { | |||
if ((buf.subarray && STR_APPLY_UIA_OK) || (!buf.subarray && STR_APPLY_OK)) { | |||
return String.fromCharCode.apply(null, utils.shrinkBuf(buf, len)); | |||
} | |||
} | |||
var result = ''; | |||
for (var i = 0; i < len; i++) { | |||
result += String.fromCharCode(buf[i]); | |||
} | |||
return result; | |||
} | |||
// Convert byte array to binary string | |||
exports.buf2binstring = function (buf) { | |||
return buf2binstring(buf, buf.length); | |||
}; | |||
// Convert binary string (typed, when possible) | |||
exports.binstring2buf = function (str) { | |||
var buf = new utils.Buf8(str.length); | |||
for (var i = 0, len = buf.length; i < len; i++) { | |||
buf[i] = str.charCodeAt(i); | |||
} | |||
return buf; | |||
}; | |||
// convert array to string | |||
exports.buf2string = function (buf, max) { | |||
var i, out, c, c_len; | |||
var len = max || buf.length; | |||
// Reserve max possible length (2 words per char) | |||
// NB: by unknown reasons, Array is significantly faster for | |||
// String.fromCharCode.apply than Uint16Array. | |||
var utf16buf = new Array(len * 2); | |||
for (out = 0, i = 0; i < len;) { | |||
c = buf[i++]; | |||
// quick process ascii | |||
if (c < 0x80) { utf16buf[out++] = c; continue; } | |||
c_len = _utf8len[c]; | |||
// skip 5 & 6 byte codes | |||
if (c_len > 4) { utf16buf[out++] = 0xfffd; i += c_len - 1; continue; } | |||
// apply mask on first byte | |||
c &= c_len === 2 ? 0x1f : c_len === 3 ? 0x0f : 0x07; | |||
// join the rest | |||
while (c_len > 1 && i < len) { | |||
c = (c << 6) | (buf[i++] & 0x3f); | |||
c_len--; | |||
} | |||
// terminated by end of string? | |||
if (c_len > 1) { utf16buf[out++] = 0xfffd; continue; } | |||
if (c < 0x10000) { | |||
utf16buf[out++] = c; | |||
} else { | |||
c -= 0x10000; | |||
utf16buf[out++] = 0xd800 | ((c >> 10) & 0x3ff); | |||
utf16buf[out++] = 0xdc00 | (c & 0x3ff); | |||
} | |||
} | |||
return buf2binstring(utf16buf, out); | |||
}; | |||
// Calculate max possible position in utf8 buffer, | |||
// that will not break sequence. If that's not possible | |||
// - (very small limits) return max size as is. | |||
// | |||
// buf[] - utf8 bytes array | |||
// max - length limit (mandatory); | |||
exports.utf8border = function (buf, max) { | |||
var pos; | |||
max = max || buf.length; | |||
if (max > buf.length) { max = buf.length; } | |||
// go back from last position, until start of sequence found | |||
pos = max - 1; | |||
while (pos >= 0 && (buf[pos] & 0xC0) === 0x80) { pos--; } | |||
// Fuckup - very small and broken sequence, | |||
// return max, because we should return something anyway. | |||
if (pos < 0) { return max; } | |||
// If we came to start of buffer - that means vuffer is too small, | |||
// return max too. | |||
if (pos === 0) { return max; } | |||
return (pos + _utf8len[buf[pos]] > max) ? pos : max; | |||
}; | |||
},{"./common":1}],3:[function(require,module,exports){ | |||
'use strict'; | |||
// Note: adler32 takes 12% for level 0 and 2% for level 6. | |||
// It doesn't worth to make additional optimizationa as in original. | |||
// Small size is preferable. | |||
function adler32(adler, buf, len, pos) { | |||
var s1 = (adler & 0xffff) |0, | |||
s2 = ((adler >>> 16) & 0xffff) |0, | |||
n = 0; | |||
while (len !== 0) { | |||
// Set limit ~ twice less than 5552, to keep | |||
// s2 in 31-bits, because we force signed ints. | |||
// in other case %= will fail. | |||
n = len > 2000 ? 2000 : len; | |||
len -= n; | |||
do { | |||
s1 = (s1 + buf[pos++]) |0; | |||
s2 = (s2 + s1) |0; | |||
} while (--n); | |||
s1 %= 65521; | |||
s2 %= 65521; | |||
} | |||
return (s1 | (s2 << 16)) |0; | |||
} | |||
module.exports = adler32; | |||
},{}],4:[function(require,module,exports){ | |||
'use strict'; | |||
// Note: we can't get significant speed boost here. | |||
// So write code to minimize size - no pregenerated tables | |||
// and array tools dependencies. | |||
// Use ordinary array, since untyped makes no boost here | |||
function makeTable() { | |||
var c, table = []; | |||
for (var n = 0; n < 256; n++) { | |||
c = n; | |||
for (var k = 0; k < 8; k++) { | |||
c = ((c & 1) ? (0xEDB88320 ^ (c >>> 1)) : (c >>> 1)); | |||
} | |||
table[n] = c; | |||
} | |||
return table; | |||
} | |||
// Create table on load. Just 255 signed longs. Not a problem. | |||
var crcTable = makeTable(); | |||
function crc32(crc, buf, len, pos) { | |||
var t = crcTable, | |||
end = pos + len; | |||
crc ^= -1; | |||
for (var i = pos; i < end; i++) { | |||
crc = (crc >>> 8) ^ t[(crc ^ buf[i]) & 0xFF]; | |||
} | |||
return (crc ^ (-1)); // >>> 0; | |||
} | |||
module.exports = crc32; | |||
},{}],5:[function(require,module,exports){ | |||
'use strict'; | |||
var utils = require('../utils/common'); | |||
var trees = require('./trees'); | |||
var adler32 = require('./adler32'); | |||
var crc32 = require('./crc32'); | |||
var msg = require('./messages'); | |||
/* Public constants ==========================================================*/ | |||
/* ===========================================================================*/ | |||
/* Allowed flush values; see deflate() and inflate() below for details */ | |||
var Z_NO_FLUSH = 0; | |||
var Z_PARTIAL_FLUSH = 1; | |||
//var Z_SYNC_FLUSH = 2; | |||
var Z_FULL_FLUSH = 3; | |||
var Z_FINISH = 4; | |||
var Z_BLOCK = 5; | |||
//var Z_TREES = 6; | |||
/* Return codes for the compression/decompression functions. Negative values | |||
* are errors, positive values are used for special but normal events. | |||
*/ | |||
var Z_OK = 0; | |||
var Z_STREAM_END = 1; | |||
//var Z_NEED_DICT = 2; | |||
//var Z_ERRNO = -1; | |||
var Z_STREAM_ERROR = -2; | |||
var Z_DATA_ERROR = -3; | |||
//var Z_MEM_ERROR = -4; | |||
var Z_BUF_ERROR = -5; | |||
//var Z_VERSION_ERROR = -6; | |||
/* compression levels */ | |||
//var Z_NO_COMPRESSION = 0; | |||
//var Z_BEST_SPEED = 1; | |||
//var Z_BEST_COMPRESSION = 9; | |||
var Z_DEFAULT_COMPRESSION = -1; | |||
var Z_FILTERED = 1; | |||
var Z_HUFFMAN_ONLY = 2; | |||
var Z_RLE = 3; | |||
var Z_FIXED = 4; | |||
var Z_DEFAULT_STRATEGY = 0; | |||
/* Possible values of the data_type field (though see inflate()) */ | |||
//var Z_BINARY = 0; | |||
//var Z_TEXT = 1; | |||
//var Z_ASCII = 1; // = Z_TEXT | |||
var Z_UNKNOWN = 2; | |||
/* The deflate compression method */ | |||
var Z_DEFLATED = 8; | |||
/*============================================================================*/ | |||
var MAX_MEM_LEVEL = 9; | |||
/* Maximum value for memLevel in deflateInit2 */ | |||
var MAX_WBITS = 15; | |||
/* 32K LZ77 window */ | |||
var DEF_MEM_LEVEL = 8; | |||
var LENGTH_CODES = 29; | |||
/* number of length codes, not counting the special END_BLOCK code */ | |||
var LITERALS = 256; | |||
/* number of literal bytes 0..255 */ | |||
var L_CODES = LITERALS + 1 + LENGTH_CODES; | |||
/* number of Literal or Length codes, including the END_BLOCK code */ | |||
var D_CODES = 30; | |||
/* number of distance codes */ | |||
var BL_CODES = 19; | |||
/* number of codes used to transfer the bit lengths */ | |||
var HEAP_SIZE = 2 * L_CODES + 1; | |||
/* maximum heap size */ | |||
var MAX_BITS = 15; | |||
/* All codes must not exceed MAX_BITS bits */ | |||
var MIN_MATCH = 3; | |||
var MAX_MATCH = 258; | |||
var MIN_LOOKAHEAD = (MAX_MATCH + MIN_MATCH + 1); | |||
var PRESET_DICT = 0x20; | |||
var INIT_STATE = 42; | |||
var EXTRA_STATE = 69; | |||
var NAME_STATE = 73; | |||
var COMMENT_STATE = 91; | |||
var HCRC_STATE = 103; | |||
var BUSY_STATE = 113; | |||
var FINISH_STATE = 666; | |||
var BS_NEED_MORE = 1; /* block not completed, need more input or more output */ | |||
var BS_BLOCK_DONE = 2; /* block flush performed */ | |||
var BS_FINISH_STARTED = 3; /* finish started, need only more output at next deflate */ | |||
var BS_FINISH_DONE = 4; /* finish done, accept no more input or output */ | |||
var OS_CODE = 0x03; // Unix :) . Don't detect, use this default. | |||
function err(strm, errorCode) { | |||
strm.msg = msg[errorCode]; | |||
return errorCode; | |||
} | |||
function rank(f) { | |||
return ((f) << 1) - ((f) > 4 ? 9 : 0); | |||
} | |||
function zero(buf) { var len = buf.length; while (--len >= 0) { buf[len] = 0; } } | |||
/* ========================================================================= | |||
* Flush as much pending output as possible. All deflate() output goes | |||
* through this function so some applications may wish to modify it | |||
* to avoid allocating a large strm->output buffer and copying into it. | |||
* (See also read_buf()). | |||
*/ | |||
function flush_pending(strm) { | |||
var s = strm.state; | |||
//_tr_flush_bits(s); | |||
var len = s.pending; | |||
if (len > strm.avail_out) { | |||
len = strm.avail_out; | |||
} | |||
if (len === 0) { return; } | |||
utils.arraySet(strm.output, s.pending_buf, s.pending_out, len, strm.next_out); | |||
strm.next_out += len; | |||
s.pending_out += len; | |||
strm.total_out += len; | |||
strm.avail_out -= len; | |||
s.pending -= len; | |||
if (s.pending === 0) { | |||
s.pending_out = 0; | |||
} | |||
} | |||
function flush_block_only(s, last) { | |||
trees._tr_flush_block(s, (s.block_start >= 0 ? s.block_start : -1), s.strstart - s.block_start, last); | |||
s.block_start = s.strstart; | |||
flush_pending(s.strm); | |||
} | |||
function put_byte(s, b) { | |||
s.pending_buf[s.pending++] = b; | |||
} | |||
/* ========================================================================= | |||
* Put a short in the pending buffer. The 16-bit value is put in MSB order. | |||
* IN assertion: the stream state is correct and there is enough room in | |||
* pending_buf. | |||
*/ | |||
function putShortMSB(s, b) { | |||
// put_byte(s, (Byte)(b >> 8)); | |||
// put_byte(s, (Byte)(b & 0xff)); | |||
s.pending_buf[s.pending++] = (b >>> 8) & 0xff; | |||
s.pending_buf[s.pending++] = b & 0xff; | |||
} | |||
/* =========================================================================== | |||
* Read a new buffer from the current input stream, update the adler32 | |||
* and total number of bytes read. All deflate() input goes through | |||
* this function so some applications may wish to modify it to avoid | |||
* allocating a large strm->input buffer and copying from it. | |||
* (See also flush_pending()). | |||
*/ | |||
function read_buf(strm, buf, start, size) { | |||
var len = strm.avail_in; | |||
if (len > size) { len = size; } | |||
if (len === 0) { return 0; } | |||
strm.avail_in -= len; | |||
// zmemcpy(buf, strm->next_in, len); | |||
utils.arraySet(buf, strm.input, strm.next_in, len, start); | |||
if (strm.state.wrap === 1) { | |||
strm.adler = adler32(strm.adler, buf, len, start); | |||
} | |||
else if (strm.state.wrap === 2) { | |||
strm.adler = crc32(strm.adler, buf, len, start); | |||
} | |||
strm.next_in += len; | |||
strm.total_in += len; | |||
return len; | |||
} | |||
/* =========================================================================== | |||
* Set match_start to the longest match starting at the given string and | |||
* return its length. Matches shorter or equal to prev_length are discarded, | |||
* in which case the result is equal to prev_length and match_start is | |||
* garbage. | |||
* IN assertions: cur_match is the head of the hash chain for the current | |||
* string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 | |||
* OUT assertion: the match length is not greater than s->lookahead. | |||
*/ | |||
function longest_match(s, cur_match) { | |||
var chain_length = s.max_chain_length; /* max hash chain length */ | |||
var scan = s.strstart; /* current string */ | |||
var match; /* matched string */ | |||
var len; /* length of current match */ | |||
var best_len = s.prev_length; /* best match length so far */ | |||
var nice_match = s.nice_match; /* stop if match long enough */ | |||
var limit = (s.strstart > (s.w_size - MIN_LOOKAHEAD)) ? | |||
s.strstart - (s.w_size - MIN_LOOKAHEAD) : 0/*NIL*/; | |||
var _win = s.window; // shortcut | |||
var wmask = s.w_mask; | |||
var prev = s.prev; | |||
/* Stop when cur_match becomes <= limit. To simplify the code, | |||
* we prevent matches with the string of window index 0. | |||
*/ | |||
var strend = s.strstart + MAX_MATCH; | |||
var scan_end1 = _win[scan + best_len - 1]; | |||
var scan_end = _win[scan + best_len]; | |||
/* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. | |||
* It is easy to get rid of this optimization if necessary. | |||
*/ | |||
// Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); | |||
/* Do not waste too much time if we already have a good match: */ | |||
if (s.prev_length >= s.good_match) { | |||
chain_length >>= 2; | |||
} | |||
/* Do not look for matches beyond the end of the input. This is necessary | |||
* to make deflate deterministic. | |||
*/ | |||
if (nice_match > s.lookahead) { nice_match = s.lookahead; } | |||
// Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); | |||
do { | |||
// Assert(cur_match < s->strstart, "no future"); | |||
match = cur_match; | |||
/* Skip to next match if the match length cannot increase | |||
* or if the match length is less than 2. Note that the checks below | |||
* for insufficient lookahead only occur occasionally for performance | |||
* reasons. Therefore uninitialized memory will be accessed, and | |||
* conditional jumps will be made that depend on those values. | |||
* However the length of the match is limited to the lookahead, so | |||
* the output of deflate is not affected by the uninitialized values. | |||
*/ | |||
if (_win[match + best_len] !== scan_end || | |||
_win[match + best_len - 1] !== scan_end1 || | |||
_win[match] !== _win[scan] || | |||
_win[++match] !== _win[scan + 1]) { | |||
continue; | |||
} | |||
/* The check at best_len-1 can be removed because it will be made | |||
* again later. (This heuristic is not always a win.) | |||
* It is not necessary to compare scan[2] and match[2] since they | |||
* are always equal when the other bytes match, given that | |||
* the hash keys are equal and that HASH_BITS >= 8. | |||
*/ | |||
scan += 2; | |||
match++; | |||
// Assert(*scan == *match, "match[2]?"); | |||
/* We check for insufficient lookahead only every 8th comparison; | |||
* the 256th check will be made at strstart+258. | |||
*/ | |||
do { | |||
/*jshint noempty:false*/ | |||
} while (_win[++scan] === _win[++match] && _win[++scan] === _win[++match] && | |||
_win[++scan] === _win[++match] && _win[++scan] === _win[++match] && | |||
_win[++scan] === _win[++match] && _win[++scan] === _win[++match] && | |||
_win[++scan] === _win[++match] && _win[++scan] === _win[++match] && | |||
scan < strend); | |||
// Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); | |||
len = MAX_MATCH - (strend - scan); | |||
scan = strend - MAX_MATCH; | |||
if (len > best_len) { | |||
s.match_start = cur_match; | |||
best_len = len; | |||
if (len >= nice_match) { | |||
break; | |||
} | |||
scan_end1 = _win[scan + best_len - 1]; | |||
scan_end = _win[scan + best_len]; | |||
} | |||
} while ((cur_match = prev[cur_match & wmask]) > limit && --chain_length !== 0); | |||
if (best_len <= s.lookahead) { | |||
return best_len; | |||
} | |||
return s.lookahead; | |||
} | |||
/* =========================================================================== | |||
* Fill the window when the lookahead becomes insufficient. | |||
* Updates strstart and lookahead. | |||
* | |||
* IN assertion: lookahead < MIN_LOOKAHEAD | |||
* OUT assertions: strstart <= window_size-MIN_LOOKAHEAD | |||
* At least one byte has been read, or avail_in == 0; reads are | |||
* performed for at least two bytes (required for the zip translate_eol | |||
* option -- not supported here). | |||
*/ | |||
function fill_window(s) { | |||
var _w_size = s.w_size; | |||
var p, n, m, more, str; | |||
//Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead"); | |||
do { | |||
more = s.window_size - s.lookahead - s.strstart; | |||
// JS ints have 32 bit, block below not needed | |||
/* Deal with !@#$% 64K limit: */ | |||
//if (sizeof(int) <= 2) { | |||
// if (more == 0 && s->strstart == 0 && s->lookahead == 0) { | |||
// more = wsize; | |||
// | |||
// } else if (more == (unsigned)(-1)) { | |||
// /* Very unlikely, but possible on 16 bit machine if | |||
// * strstart == 0 && lookahead == 1 (input done a byte at time) | |||
// */ | |||
// more--; | |||
// } | |||
//} | |||
/* If the window is almost full and there is insufficient lookahead, | |||
* move the upper half to the lower one to make room in the upper half. | |||
*/ | |||
if (s.strstart >= _w_size + (_w_size - MIN_LOOKAHEAD)) { | |||
utils.arraySet(s.window, s.window, _w_size, _w_size, 0); | |||
s.match_start -= _w_size; | |||
s.strstart -= _w_size; | |||
/* we now have strstart >= MAX_DIST */ | |||
s.block_start -= _w_size; | |||
/* Slide the hash table (could be avoided with 32 bit values | |||
at the expense of memory usage). We slide even when level == 0 | |||
to keep the hash table consistent if we switch back to level > 0 | |||
later. (Using level 0 permanently is not an optimal usage of | |||
zlib, so we don't care about this pathological case.) | |||
*/ | |||
n = s.hash_size; | |||
p = n; | |||
do { | |||
m = s.head[--p]; | |||
s.head[p] = (m >= _w_size ? m - _w_size : 0); | |||
} while (--n); | |||
n = _w_size; | |||
p = n; | |||
do { | |||
m = s.prev[--p]; | |||
s.prev[p] = (m >= _w_size ? m - _w_size : 0); | |||
/* If n is not on any hash chain, prev[n] is garbage but | |||
* its value will never be used. | |||
*/ | |||
} while (--n); | |||
more += _w_size; | |||
} | |||
if (s.strm.avail_in === 0) { | |||
break; | |||
} | |||
/* If there was no sliding: | |||
* strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && | |||
* more == window_size - lookahead - strstart | |||
* => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) | |||
* => more >= window_size - 2*WSIZE + 2 | |||
* In the BIG_MEM or MMAP case (not yet supported), | |||
* window_size == input_size + MIN_LOOKAHEAD && | |||
* strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. | |||
* Otherwise, window_size == 2*WSIZE so more >= 2. | |||
* If there was sliding, more >= WSIZE. So in all cases, more >= 2. | |||
*/ | |||
//Assert(more >= 2, "more < 2"); | |||
n = read_buf(s.strm, s.window, s.strstart + s.lookahead, more); | |||
s.lookahead += n; | |||
/* Initialize the hash value now that we have some input: */ | |||
if (s.lookahead + s.insert >= MIN_MATCH) { | |||
str = s.strstart - s.insert; | |||
s.ins_h = s.window[str]; | |||
/* UPDATE_HASH(s, s->ins_h, s->window[str + 1]); */ | |||
s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[str + 1]) & s.hash_mask; | |||
//#if MIN_MATCH != 3 | |||
// Call update_hash() MIN_MATCH-3 more times | |||
//#endif | |||
while (s.insert) { | |||
/* UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); */ | |||
s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[str + MIN_MATCH - 1]) & s.hash_mask; | |||
s.prev[str & s.w_mask] = s.head[s.ins_h]; | |||
s.head[s.ins_h] = str; | |||
str++; | |||
s.insert--; | |||
if (s.lookahead + s.insert < MIN_MATCH) { | |||
break; | |||
} | |||
} | |||
} | |||
/* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, | |||
* but this is not important since only literal bytes will be emitted. | |||
*/ | |||
} while (s.lookahead < MIN_LOOKAHEAD && s.strm.avail_in !== 0); | |||
/* If the WIN_INIT bytes after the end of the current data have never been | |||
* written, then zero those bytes in order to avoid memory check reports of | |||
* the use of uninitialized (or uninitialised as Julian writes) bytes by | |||
* the longest match routines. Update the high water mark for the next | |||
* time through here. WIN_INIT is set to MAX_MATCH since the longest match | |||
* routines allow scanning to strstart + MAX_MATCH, ignoring lookahead. | |||
*/ | |||
// if (s.high_water < s.window_size) { | |||
// var curr = s.strstart + s.lookahead; | |||
// var init = 0; | |||
// | |||
// if (s.high_water < curr) { | |||
// /* Previous high water mark below current data -- zero WIN_INIT | |||
// * bytes or up to end of window, whichever is less. | |||
// */ | |||
// init = s.window_size - curr; | |||
// if (init > WIN_INIT) | |||
// init = WIN_INIT; | |||
// zmemzero(s->window + curr, (unsigned)init); | |||
// s->high_water = curr + init; | |||
// } | |||
// else if (s->high_water < (ulg)curr + WIN_INIT) { | |||
// /* High water mark at or above current data, but below current data | |||
// * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up | |||
// * to end of window, whichever is less. | |||
// */ | |||
// init = (ulg)curr + WIN_INIT - s->high_water; | |||
// if (init > s->window_size - s->high_water) | |||
// init = s->window_size - s->high_water; | |||
// zmemzero(s->window + s->high_water, (unsigned)init); | |||
// s->high_water += init; | |||
// } | |||
// } | |||
// | |||
// Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD, | |||
// "not enough room for search"); | |||
} | |||
/* =========================================================================== | |||
* Copy without compression as much as possible from the input stream, return | |||
* the current block state. | |||
* This function does not insert new strings in the dictionary since | |||
* uncompressible data is probably not useful. This function is used | |||
* only for the level=0 compression option. | |||
* NOTE: this function should be optimized to avoid extra copying from | |||
* window to pending_buf. | |||
*/ | |||
function deflate_stored(s, flush) { | |||
/* Stored blocks are limited to 0xffff bytes, pending_buf is limited | |||
* to pending_buf_size, and each stored block has a 5 byte header: | |||
*/ | |||
var max_block_size = 0xffff; | |||
if (max_block_size > s.pending_buf_size - 5) { | |||
max_block_size = s.pending_buf_size - 5; | |||
} | |||
/* Copy as much as possible from input to output: */ | |||
for (;;) { | |||
/* Fill the window as much as possible: */ | |||
if (s.lookahead <= 1) { | |||
//Assert(s->strstart < s->w_size+MAX_DIST(s) || | |||
// s->block_start >= (long)s->w_size, "slide too late"); | |||
// if (!(s.strstart < s.w_size + (s.w_size - MIN_LOOKAHEAD) || | |||
// s.block_start >= s.w_size)) { | |||
// throw new Error("slide too late"); | |||
// } | |||
fill_window(s); | |||
if (s.lookahead === 0 && flush === Z_NO_FLUSH) { | |||
return BS_NEED_MORE; | |||
} | |||
if (s.lookahead === 0) { | |||
break; | |||
} | |||
/* flush the current block */ | |||
} | |||
//Assert(s->block_start >= 0L, "block gone"); | |||
// if (s.block_start < 0) throw new Error("block gone"); | |||
s.strstart += s.lookahead; | |||
s.lookahead = 0; | |||
/* Emit a stored block if pending_buf will be full: */ | |||
var max_start = s.block_start + max_block_size; | |||
if (s.strstart === 0 || s.strstart >= max_start) { | |||
/* strstart == 0 is possible when wraparound on 16-bit machine */ | |||
s.lookahead = s.strstart - max_start; | |||
s.strstart = max_start; | |||
/*** FLUSH_BLOCK(s, 0); ***/ | |||
flush_block_only(s, false); | |||
if (s.strm.avail_out === 0) { | |||
return BS_NEED_MORE; | |||
} | |||
/***/ | |||
} | |||
/* Flush if we may have to slide, otherwise block_start may become | |||
* negative and the data will be gone: | |||
*/ | |||
if (s.strstart - s.block_start >= (s.w_size - MIN_LOOKAHEAD)) { | |||
/*** FLUSH_BLOCK(s, 0); ***/ | |||
flush_block_only(s, false); | |||
if (s.strm.avail_out === 0) { | |||
return BS_NEED_MORE; | |||
} | |||
/***/ | |||
} | |||
} | |||
s.insert = 0; | |||
if (flush === Z_FINISH) { | |||
/*** FLUSH_BLOCK(s, 1); ***/ | |||
flush_block_only(s, true); | |||
if (s.strm.avail_out === 0) { | |||
return BS_FINISH_STARTED; | |||
} | |||
/***/ | |||
return BS_FINISH_DONE; | |||
} | |||
if (s.strstart > s.block_start) { | |||
/*** FLUSH_BLOCK(s, 0); ***/ | |||
flush_block_only(s, false); | |||
if (s.strm.avail_out === 0) { | |||
return BS_NEED_MORE; | |||
} | |||
/***/ | |||
} | |||
return BS_NEED_MORE; | |||
} | |||
/* =========================================================================== | |||
* Compress as much as possible from the input stream, return the current | |||
* block state. | |||
* This function does not perform lazy evaluation of matches and inserts | |||
* new strings in the dictionary only for unmatched strings or for short | |||
* matches. It is used only for the fast compression options. | |||
*/ | |||
function deflate_fast(s, flush) { | |||
var hash_head; /* head of the hash chain */ | |||
var bflush; /* set if current block must be flushed */ | |||
for (;;) { | |||
/* Make sure that we always have enough lookahead, except | |||
* at the end of the input file. We need MAX_MATCH bytes | |||
* for the next match, plus MIN_MATCH bytes to insert the | |||
* string following the next match. | |||
*/ | |||
if (s.lookahead < MIN_LOOKAHEAD) { | |||
fill_window(s); | |||
if (s.lookahead < MIN_LOOKAHEAD && flush === Z_NO_FLUSH) { | |||
return BS_NEED_MORE; | |||
} | |||
if (s.lookahead === 0) { | |||
break; /* flush the current block */ | |||
} | |||
} | |||
/* Insert the string window[strstart .. strstart+2] in the | |||
* dictionary, and set hash_head to the head of the hash chain: | |||
*/ | |||
hash_head = 0/*NIL*/; | |||
if (s.lookahead >= MIN_MATCH) { | |||
/*** INSERT_STRING(s, s.strstart, hash_head); ***/ | |||
s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask; | |||
hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h]; | |||
s.head[s.ins_h] = s.strstart; | |||
/***/ | |||
} | |||
/* Find the longest match, discarding those <= prev_length. | |||
* At this point we have always match_length < MIN_MATCH | |||
*/ | |||
if (hash_head !== 0/*NIL*/ && ((s.strstart - hash_head) <= (s.w_size - MIN_LOOKAHEAD))) { | |||
/* To simplify the code, we prevent matches with the string | |||
* of window index 0 (in particular we have to avoid a match | |||
* of the string with itself at the start of the input file). | |||
*/ | |||
s.match_length = longest_match(s, hash_head); | |||
/* longest_match() sets match_start */ | |||
} | |||
if (s.match_length >= MIN_MATCH) { | |||
// check_match(s, s.strstart, s.match_start, s.match_length); // for debug only | |||
/*** _tr_tally_dist(s, s.strstart - s.match_start, | |||
s.match_length - MIN_MATCH, bflush); ***/ | |||
bflush = trees._tr_tally(s, s.strstart - s.match_start, s.match_length - MIN_MATCH); | |||
s.lookahead -= s.match_length; | |||
/* Insert new strings in the hash table only if the match length | |||
* is not too large. This saves time but degrades compression. | |||
*/ | |||
if (s.match_length <= s.max_lazy_match/*max_insert_length*/ && s.lookahead >= MIN_MATCH) { | |||
s.match_length--; /* string at strstart already in table */ | |||
do { | |||
s.strstart++; | |||
/*** INSERT_STRING(s, s.strstart, hash_head); ***/ | |||
s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask; | |||
hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h]; | |||
s.head[s.ins_h] = s.strstart; | |||
/***/ | |||
/* strstart never exceeds WSIZE-MAX_MATCH, so there are | |||
* always MIN_MATCH bytes ahead. | |||
*/ | |||
} while (--s.match_length !== 0); | |||
s.strstart++; | |||
} else | |||
{ | |||
s.strstart += s.match_length; | |||
s.match_length = 0; | |||
s.ins_h = s.window[s.strstart]; | |||
/* UPDATE_HASH(s, s.ins_h, s.window[s.strstart+1]); */ | |||
s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + 1]) & s.hash_mask; | |||
//#if MIN_MATCH != 3 | |||
// Call UPDATE_HASH() MIN_MATCH-3 more times | |||
//#endif | |||
/* If lookahead < MIN_MATCH, ins_h is garbage, but it does not | |||
* matter since it will be recomputed at next deflate call. | |||
*/ | |||
} | |||
} else { | |||
/* No match, output a literal byte */ | |||
//Tracevv((stderr,"%c", s.window[s.strstart])); | |||
/*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/ | |||
bflush = trees._tr_tally(s, 0, s.window[s.strstart]); | |||
s.lookahead--; | |||
s.strstart++; | |||
} | |||
if (bflush) { | |||
/*** FLUSH_BLOCK(s, 0); ***/ | |||
flush_block_only(s, false); | |||
if (s.strm.avail_out === 0) { | |||
return BS_NEED_MORE; | |||
} | |||
/***/ | |||
} | |||
} | |||
s.insert = ((s.strstart < (MIN_MATCH - 1)) ? s.strstart : MIN_MATCH - 1); | |||
if (flush === Z_FINISH) { | |||
/*** FLUSH_BLOCK(s, 1); ***/ | |||
flush_block_only(s, true); | |||
if (s.strm.avail_out === 0) { | |||
return BS_FINISH_STARTED; | |||
} | |||
/***/ | |||
return BS_FINISH_DONE; | |||
} | |||
if (s.last_lit) { | |||
/*** FLUSH_BLOCK(s, 0); ***/ | |||
flush_block_only(s, false); | |||
if (s.strm.avail_out === 0) { | |||
return BS_NEED_MORE; | |||
} | |||
/***/ | |||
} | |||
return BS_BLOCK_DONE; | |||
} | |||
/* =========================================================================== | |||
* Same as above, but achieves better compression. We use a lazy | |||
* evaluation for matches: a match is finally adopted only if there is | |||
* no better match at the next window position. | |||
*/ | |||
function deflate_slow(s, flush) { | |||
var hash_head; /* head of hash chain */ | |||
var bflush; /* set if current block must be flushed */ | |||
var max_insert; | |||
/* Process the input block. */ | |||
for (;;) { | |||
/* Make sure that we always have enough lookahead, except | |||
* at the end of the input file. We need MAX_MATCH bytes | |||
* for the next match, plus MIN_MATCH bytes to insert the | |||
* string following the next match. | |||
*/ | |||
if (s.lookahead < MIN_LOOKAHEAD) { | |||
fill_window(s); | |||
if (s.lookahead < MIN_LOOKAHEAD && flush === Z_NO_FLUSH) { | |||
return BS_NEED_MORE; | |||
} | |||
if (s.lookahead === 0) { break; } /* flush the current block */ | |||
} | |||
/* Insert the string window[strstart .. strstart+2] in the | |||
* dictionary, and set hash_head to the head of the hash chain: | |||
*/ | |||
hash_head = 0/*NIL*/; | |||
if (s.lookahead >= MIN_MATCH) { | |||
/*** INSERT_STRING(s, s.strstart, hash_head); ***/ | |||
s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask; | |||
hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h]; | |||
s.head[s.ins_h] = s.strstart; | |||
/***/ | |||
} | |||
/* Find the longest match, discarding those <= prev_length. | |||
*/ | |||
s.prev_length = s.match_length; | |||
s.prev_match = s.match_start; | |||
s.match_length = MIN_MATCH - 1; | |||
if (hash_head !== 0/*NIL*/ && s.prev_length < s.max_lazy_match && | |||
s.strstart - hash_head <= (s.w_size - MIN_LOOKAHEAD)/*MAX_DIST(s)*/) { | |||
/* To simplify the code, we prevent matches with the string | |||
* of window index 0 (in particular we have to avoid a match | |||
* of the string with itself at the start of the input file). | |||
*/ | |||
s.match_length = longest_match(s, hash_head); | |||
/* longest_match() sets match_start */ | |||
if (s.match_length <= 5 && | |||
(s.strategy === Z_FILTERED || (s.match_length === MIN_MATCH && s.strstart - s.match_start > 4096/*TOO_FAR*/))) { | |||
/* If prev_match is also MIN_MATCH, match_start is garbage | |||
* but we will ignore the current match anyway. | |||
*/ | |||
s.match_length = MIN_MATCH - 1; | |||
} | |||
} | |||
/* If there was a match at the previous step and the current | |||
* match is not better, output the previous match: | |||
*/ | |||
if (s.prev_length >= MIN_MATCH && s.match_length <= s.prev_length) { | |||
max_insert = s.strstart + s.lookahead - MIN_MATCH; | |||
/* Do not insert strings in hash table beyond this. */ | |||
//check_match(s, s.strstart-1, s.prev_match, s.prev_length); | |||
/***_tr_tally_dist(s, s.strstart - 1 - s.prev_match, | |||
s.prev_length - MIN_MATCH, bflush);***/ | |||
bflush = trees._tr_tally(s, s.strstart - 1 - s.prev_match, s.prev_length - MIN_MATCH); | |||
/* Insert in hash table all strings up to the end of the match. | |||
* strstart-1 and strstart are already inserted. If there is not | |||
* enough lookahead, the last two strings are not inserted in | |||
* the hash table. | |||
*/ | |||
s.lookahead -= s.prev_length - 1; | |||
s.prev_length -= 2; | |||
do { | |||
if (++s.strstart <= max_insert) { | |||
/*** INSERT_STRING(s, s.strstart, hash_head); ***/ | |||
s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask; | |||
hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h]; | |||
s.head[s.ins_h] = s.strstart; | |||
/***/ | |||
} | |||
} while (--s.prev_length !== 0); | |||
s.match_available = 0; | |||
s.match_length = MIN_MATCH - 1; | |||
s.strstart++; | |||
if (bflush) { | |||
/*** FLUSH_BLOCK(s, 0); ***/ | |||
flush_block_only(s, false); | |||
if (s.strm.avail_out === 0) { | |||
return BS_NEED_MORE; | |||
} | |||
/***/ | |||
} | |||
} else if (s.match_available) { | |||
/* If there was no match at the previous position, output a | |||
* single literal. If there was a match but the current match | |||
* is longer, truncate the previous match to a single literal. | |||
*/ | |||
//Tracevv((stderr,"%c", s->window[s->strstart-1])); | |||
/*** _tr_tally_lit(s, s.window[s.strstart-1], bflush); ***/ | |||
bflush = trees._tr_tally(s, 0, s.window[s.strstart - 1]); | |||
if (bflush) { | |||
/*** FLUSH_BLOCK_ONLY(s, 0) ***/ | |||
flush_block_only(s, false); | |||
/***/ | |||
} | |||
s.strstart++; | |||
s.lookahead--; | |||
if (s.strm.avail_out === 0) { | |||
return BS_NEED_MORE; | |||
} | |||
} else { | |||
/* There is no previous match to compare with, wait for | |||
* the next step to decide. | |||
*/ | |||
s.match_available = 1; | |||
s.strstart++; | |||
s.lookahead--; | |||
} | |||
} | |||
//Assert (flush != Z_NO_FLUSH, "no flush?"); | |||
if (s.match_available) { | |||
//Tracevv((stderr,"%c", s->window[s->strstart-1])); | |||
/*** _tr_tally_lit(s, s.window[s.strstart-1], bflush); ***/ | |||
bflush = trees._tr_tally(s, 0, s.window[s.strstart - 1]); | |||
s.match_available = 0; | |||
} | |||
s.insert = s.strstart < MIN_MATCH - 1 ? s.strstart : MIN_MATCH - 1; | |||
if (flush === Z_FINISH) { | |||
/*** FLUSH_BLOCK(s, 1); ***/ | |||
flush_block_only(s, true); | |||
if (s.strm.avail_out === 0) { | |||
return BS_FINISH_STARTED; | |||
} | |||
/***/ | |||
return BS_FINISH_DONE; | |||
} | |||
if (s.last_lit) { | |||
/*** FLUSH_BLOCK(s, 0); ***/ | |||
flush_block_only(s, false); | |||
if (s.strm.avail_out === 0) { | |||
return BS_NEED_MORE; | |||
} | |||
/***/ | |||
} | |||
return BS_BLOCK_DONE; | |||
} | |||
/* =========================================================================== | |||
* For Z_RLE, simply look for runs of bytes, generate matches only of distance | |||
* one. Do not maintain a hash table. (It will be regenerated if this run of | |||
* deflate switches away from Z_RLE.) | |||
*/ | |||
function deflate_rle(s, flush) { | |||
var bflush; /* set if current block must be flushed */ | |||
var prev; /* byte at distance one to match */ | |||
var scan, strend; /* scan goes up to strend for length of run */ | |||
var _win = s.window; | |||
for (;;) { | |||
/* Make sure that we always have enough lookahead, except | |||
* at the end of the input file. We need MAX_MATCH bytes | |||
* for the longest run, plus one for the unrolled loop. | |||
*/ | |||
if (s.lookahead <= MAX_MATCH) { | |||
fill_window(s); | |||
if (s.lookahead <= MAX_MATCH && flush === Z_NO_FLUSH) { | |||
return BS_NEED_MORE; | |||
} | |||
if (s.lookahead === 0) { break; } /* flush the current block */ | |||
} | |||
/* See how many times the previous byte repeats */ | |||
s.match_length = 0; | |||
if (s.lookahead >= MIN_MATCH && s.strstart > 0) { | |||
scan = s.strstart - 1; | |||
prev = _win[scan]; | |||
if (prev === _win[++scan] && prev === _win[++scan] && prev === _win[++scan]) { | |||
strend = s.strstart + MAX_MATCH; | |||
do { | |||
/*jshint noempty:false*/ | |||
} while (prev === _win[++scan] && prev === _win[++scan] && | |||
prev === _win[++scan] && prev === _win[++scan] && | |||
prev === _win[++scan] && prev === _win[++scan] && | |||
prev === _win[++scan] && prev === _win[++scan] && | |||
scan < strend); | |||
s.match_length = MAX_MATCH - (strend - scan); | |||
if (s.match_length > s.lookahead) { | |||
s.match_length = s.lookahead; | |||
} | |||
} | |||
//Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan"); | |||
} | |||
/* Emit match if have run of MIN_MATCH or longer, else emit literal */ | |||
if (s.match_length >= MIN_MATCH) { | |||
//check_match(s, s.strstart, s.strstart - 1, s.match_length); | |||
/*** _tr_tally_dist(s, 1, s.match_length - MIN_MATCH, bflush); ***/ | |||
bflush = trees._tr_tally(s, 1, s.match_length - MIN_MATCH); | |||
s.lookahead -= s.match_length; | |||
s.strstart += s.match_length; | |||
s.match_length = 0; | |||
} else { | |||
/* No match, output a literal byte */ | |||
//Tracevv((stderr,"%c", s->window[s->strstart])); | |||
/*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/ | |||
bflush = trees._tr_tally(s, 0, s.window[s.strstart]); | |||
s.lookahead--; | |||
s.strstart++; | |||
} | |||
if (bflush) { | |||
/*** FLUSH_BLOCK(s, 0); ***/ | |||
flush_block_only(s, false); | |||
if (s.strm.avail_out === 0) { | |||
return BS_NEED_MORE; | |||
} | |||
/***/ | |||
} | |||
} | |||
s.insert = 0; | |||
if (flush === Z_FINISH) { | |||
/*** FLUSH_BLOCK(s, 1); ***/ | |||
flush_block_only(s, true); | |||
if (s.strm.avail_out === 0) { | |||
return BS_FINISH_STARTED; | |||
} | |||
/***/ | |||
return BS_FINISH_DONE; | |||
} | |||
if (s.last_lit) { | |||
/*** FLUSH_BLOCK(s, 0); ***/ | |||
flush_block_only(s, false); | |||
if (s.strm.avail_out === 0) { | |||
return BS_NEED_MORE; | |||
} | |||
/***/ | |||
} | |||
return BS_BLOCK_DONE; | |||
} | |||
/* =========================================================================== | |||
* For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table. | |||
* (It will be regenerated if this run of deflate switches away from Huffman.) | |||
*/ | |||
function deflate_huff(s, flush) { | |||
var bflush; /* set if current block must be flushed */ | |||
for (;;) { | |||
/* Make sure that we have a literal to write. */ | |||
if (s.lookahead === 0) { | |||
fill_window(s); | |||
if (s.lookahead === 0) { | |||
if (flush === Z_NO_FLUSH) { | |||
return BS_NEED_MORE; | |||
} | |||
break; /* flush the current block */ | |||
} | |||
} | |||
/* Output a literal byte */ | |||
s.match_length = 0; | |||
//Tracevv((stderr,"%c", s->window[s->strstart])); | |||
/*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/ | |||
bflush = trees._tr_tally(s, 0, s.window[s.strstart]); | |||
s.lookahead--; | |||
s.strstart++; | |||
if (bflush) { | |||
/*** FLUSH_BLOCK(s, 0); ***/ | |||
flush_block_only(s, false); | |||
if (s.strm.avail_out === 0) { | |||
return BS_NEED_MORE; | |||
} | |||
/***/ | |||
} | |||
} | |||
s.insert = 0; | |||
if (flush === Z_FINISH) { | |||
/*** FLUSH_BLOCK(s, 1); ***/ | |||
flush_block_only(s, true); | |||
if (s.strm.avail_out === 0) { | |||
return BS_FINISH_STARTED; | |||
} | |||
/***/ | |||
return BS_FINISH_DONE; | |||
} | |||
if (s.last_lit) { | |||
/*** FLUSH_BLOCK(s, 0); ***/ | |||
flush_block_only(s, false); | |||
if (s.strm.avail_out === 0) { | |||
return BS_NEED_MORE; | |||
} | |||
/***/ | |||
} | |||
return BS_BLOCK_DONE; | |||
} | |||
/* Values for max_lazy_match, good_match and max_chain_length, depending on | |||
* the desired pack level (0..9). The values given below have been tuned to | |||
* exclude worst case performance for pathological files. Better values may be | |||
* found for specific files. | |||
*/ | |||
function Config(good_length, max_lazy, nice_length, max_chain, func) { | |||
this.good_length = good_length; | |||
this.max_lazy = max_lazy; | |||
this.nice_length = nice_length; | |||
this.max_chain = max_chain; | |||
this.func = func; | |||
} | |||
var configuration_table; | |||
configuration_table = [ | |||
/* good lazy nice chain */ | |||
new Config(0, 0, 0, 0, deflate_stored), /* 0 store only */ | |||
new Config(4, 4, 8, 4, deflate_fast), /* 1 max speed, no lazy matches */ | |||
new Config(4, 5, 16, 8, deflate_fast), /* 2 */ | |||
new Config(4, 6, 32, 32, deflate_fast), /* 3 */ | |||
new Config(4, 4, 16, 16, deflate_slow), /* 4 lazy matches */ | |||
new Config(8, 16, 32, 32, deflate_slow), /* 5 */ | |||
new Config(8, 16, 128, 128, deflate_slow), /* 6 */ | |||
new Config(8, 32, 128, 256, deflate_slow), /* 7 */ | |||
new Config(32, 128, 258, 1024, deflate_slow), /* 8 */ | |||
new Config(32, 258, 258, 4096, deflate_slow) /* 9 max compression */ | |||
]; | |||
/* =========================================================================== | |||
* Initialize the "longest match" routines for a new zlib stream | |||
*/ | |||
function lm_init(s) { | |||
s.window_size = 2 * s.w_size; | |||
/*** CLEAR_HASH(s); ***/ | |||
zero(s.head); // Fill with NIL (= 0); | |||
/* Set the default configuration parameters: | |||
*/ | |||
s.max_lazy_match = configuration_table[s.level].max_lazy; | |||
s.good_match = configuration_table[s.level].good_length; | |||
s.nice_match = configuration_table[s.level].nice_length; | |||
s.max_chain_length = configuration_table[s.level].max_chain; | |||
s.strstart = 0; | |||
s.block_start = 0; | |||
s.lookahead = 0; | |||
s.insert = 0; | |||
s.match_length = s.prev_length = MIN_MATCH - 1; | |||
s.match_available = 0; | |||
s.ins_h = 0; | |||
} | |||
function DeflateState() { | |||
this.strm = null; /* pointer back to this zlib stream */ | |||
this.status = 0; /* as the name implies */ | |||
this.pending_buf = null; /* output still pending */ | |||
this.pending_buf_size = 0; /* size of pending_buf */ | |||
this.pending_out = 0; /* next pending byte to output to the stream */ | |||
this.pending = 0; /* nb of bytes in the pending buffer */ | |||
this.wrap = 0; /* bit 0 true for zlib, bit 1 true for gzip */ | |||
this.gzhead = null; /* gzip header information to write */ | |||
this.gzindex = 0; /* where in extra, name, or comment */ | |||
this.method = Z_DEFLATED; /* can only be DEFLATED */ | |||
this.last_flush = -1; /* value of flush param for previous deflate call */ | |||
this.w_size = 0; /* LZ77 window size (32K by default) */ | |||
this.w_bits = 0; /* log2(w_size) (8..16) */ | |||
this.w_mask = 0; /* w_size - 1 */ | |||
this.window = null; | |||
/* Sliding window. Input bytes are read into the second half of the window, | |||
* and move to the first half later to keep a dictionary of at least wSize | |||
* bytes. With this organization, matches are limited to a distance of | |||
* wSize-MAX_MATCH bytes, but this ensures that IO is always | |||
* performed with a length multiple of the block size. | |||
*/ | |||
this.window_size = 0; | |||
/* Actual size of window: 2*wSize, except when the user input buffer | |||
* is directly used as sliding window. | |||
*/ | |||
this.prev = null; | |||
/* Link to older string with same hash index. To limit the size of this | |||
* array to 64K, this link is maintained only for the last 32K strings. | |||
* An index in this array is thus a window index modulo 32K. | |||
*/ | |||
this.head = null; /* Heads of the hash chains or NIL. */ | |||
this.ins_h = 0; /* hash index of string to be inserted */ | |||
this.hash_size = 0; /* number of elements in hash table */ | |||
this.hash_bits = 0; /* log2(hash_size) */ | |||
this.hash_mask = 0; /* hash_size-1 */ | |||
this.hash_shift = 0; | |||
/* Number of bits by which ins_h must be shifted at each input | |||
* step. It must be such that after MIN_MATCH steps, the oldest | |||
* byte no longer takes part in the hash key, that is: | |||
* hash_shift * MIN_MATCH >= hash_bits | |||
*/ | |||
this.block_start = 0; | |||
/* Window position at the beginning of the current output block. Gets | |||
* negative when the window is moved backwards. | |||
*/ | |||
this.match_length = 0; /* length of best match */ | |||
this.prev_match = 0; /* previous match */ | |||
this.match_available = 0; /* set if previous match exists */ | |||
this.strstart = 0; /* start of string to insert */ | |||
this.match_start = 0; /* start of matching string */ | |||
this.lookahead = 0; /* number of valid bytes ahead in window */ | |||
this.prev_length = 0; | |||
/* Length of the best match at previous step. Matches not greater than this | |||
* are discarded. This is used in the lazy match evaluation. | |||
*/ | |||
this.max_chain_length = 0; | |||
/* To speed up deflation, hash chains are never searched beyond this | |||
* length. A higher limit improves compression ratio but degrades the | |||
* speed. | |||
*/ | |||
this.max_lazy_match = 0; | |||
/* Attempt to find a better match only when the current match is strictly | |||
* smaller than this value. This mechanism is used only for compression | |||
* levels >= 4. | |||
*/ | |||
// That's alias to max_lazy_match, don't use directly | |||
//this.max_insert_length = 0; | |||
/* Insert new strings in the hash table only if the match length is not | |||
* greater than this length. This saves time but degrades compression. | |||
* max_insert_length is used only for compression levels <= 3. | |||
*/ | |||
this.level = 0; /* compression level (1..9) */ | |||
this.strategy = 0; /* favor or force Huffman coding*/ | |||
this.good_match = 0; | |||
/* Use a faster search when the previous match is longer than this */ | |||
this.nice_match = 0; /* Stop searching when current match exceeds this */ | |||
/* used by trees.c: */ | |||
/* Didn't use ct_data typedef below to suppress compiler warning */ | |||
// struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */ | |||
// struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */ | |||
// struct ct_data_s bl_tree[2*BL_CODES+1]; /* Huffman tree for bit lengths */ | |||
// Use flat array of DOUBLE size, with interleaved fata, | |||
// because JS does not support effective | |||
this.dyn_ltree = new utils.Buf16(HEAP_SIZE * 2); | |||
this.dyn_dtree = new utils.Buf16((2 * D_CODES + 1) * 2); | |||
this.bl_tree = new utils.Buf16((2 * BL_CODES + 1) * 2); | |||
zero(this.dyn_ltree); | |||
zero(this.dyn_dtree); | |||
zero(this.bl_tree); | |||
this.l_desc = null; /* desc. for literal tree */ | |||
this.d_desc = null; /* desc. for distance tree */ | |||
this.bl_desc = null; /* desc. for bit length tree */ | |||
//ush bl_count[MAX_BITS+1]; | |||
this.bl_count = new utils.Buf16(MAX_BITS + 1); | |||
/* number of codes at each bit length for an optimal tree */ | |||
//int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */ | |||
this.heap = new utils.Buf16(2 * L_CODES + 1); /* heap used to build the Huffman trees */ | |||
zero(this.heap); | |||
this.heap_len = 0; /* number of elements in the heap */ | |||
this.heap_max = 0; /* element of largest frequency */ | |||
/* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used. | |||
* The same heap array is used to build all trees. | |||
*/ | |||
this.depth = new utils.Buf16(2 * L_CODES + 1); //uch depth[2*L_CODES+1]; | |||
zero(this.depth); | |||
/* Depth of each subtree used as tie breaker for trees of equal frequency | |||
*/ | |||
this.l_buf = 0; /* buffer index for literals or lengths */ | |||
this.lit_bufsize = 0; | |||
/* Size of match buffer for literals/lengths. There are 4 reasons for | |||
* limiting lit_bufsize to 64K: | |||
* - frequencies can be kept in 16 bit counters | |||
* - if compression is not successful for the first block, all input | |||
* data is still in the window so we can still emit a stored block even | |||
* when input comes from standard input. (This can also be done for | |||
* all blocks if lit_bufsize is not greater than 32K.) | |||
* - if compression is not successful for a file smaller than 64K, we can | |||
* even emit a stored file instead of a stored block (saving 5 bytes). | |||
* This is applicable only for zip (not gzip or zlib). | |||
* - creating new Huffman trees less frequently may not provide fast | |||
* adaptation to changes in the input data statistics. (Take for | |||
* example a binary file with poorly compressible code followed by | |||
* a highly compressible string table.) Smaller buffer sizes give | |||
* fast adaptation but have of course the overhead of transmitting | |||
* trees more frequently. | |||
* - I can't count above 4 | |||
*/ | |||
this.last_lit = 0; /* running index in l_buf */ | |||
this.d_buf = 0; | |||
/* Buffer index for distances. To simplify the code, d_buf and l_buf have | |||
* the same number of elements. To use different lengths, an extra flag | |||
* array would be necessary. | |||
*/ | |||
this.opt_len = 0; /* bit length of current block with optimal trees */ | |||
this.static_len = 0; /* bit length of current block with static trees */ | |||
this.matches = 0; /* number of string matches in current block */ | |||
this.insert = 0; /* bytes at end of window left to insert */ | |||
this.bi_buf = 0; | |||
/* Output buffer. bits are inserted starting at the bottom (least | |||
* significant bits). | |||
*/ | |||
this.bi_valid = 0; | |||
/* Number of valid bits in bi_buf. All bits above the last valid bit | |||
* are always zero. | |||
*/ | |||
// Used for window memory init. We safely ignore it for JS. That makes | |||
// sense only for pointers and memory check tools. | |||
//this.high_water = 0; | |||
/* High water mark offset in window for initialized bytes -- bytes above | |||
* this are set to zero in order to avoid memory check warnings when | |||
* longest match routines access bytes past the input. This is then | |||
* updated to the new high water mark. | |||
*/ | |||
} | |||
function deflateResetKeep(strm) { | |||
var s; | |||
if (!strm || !strm.state) { | |||
return err(strm, Z_STREAM_ERROR); | |||
} | |||
strm.total_in = strm.total_out = 0; | |||
strm.data_type = Z_UNKNOWN; | |||
s = strm.state; | |||
s.pending = 0; | |||
s.pending_out = 0; | |||
if (s.wrap < 0) { | |||
s.wrap = -s.wrap; | |||
/* was made negative by deflate(..., Z_FINISH); */ | |||
} | |||
s.status = (s.wrap ? INIT_STATE : BUSY_STATE); | |||
strm.adler = (s.wrap === 2) ? | |||
0 // crc32(0, Z_NULL, 0) | |||
: | |||
1; // adler32(0, Z_NULL, 0) | |||
s.last_flush = Z_NO_FLUSH; | |||
trees._tr_init(s); | |||
return Z_OK; | |||
} | |||
function deflateReset(strm) { | |||
var ret = deflateResetKeep(strm); | |||
if (ret === Z_OK) { | |||
lm_init(strm.state); | |||
} | |||
return ret; | |||
} | |||
function deflateSetHeader(strm, head) { | |||
if (!strm || !strm.state) { return Z_STREAM_ERROR; } | |||
if (strm.state.wrap !== 2) { return Z_STREAM_ERROR; } | |||
strm.state.gzhead = head; | |||
return Z_OK; | |||
} | |||
function deflateInit2(strm, level, method, windowBits, memLevel, strategy) { | |||
if (!strm) { // === Z_NULL | |||
return Z_STREAM_ERROR; | |||
} | |||
var wrap = 1; | |||
if (level === Z_DEFAULT_COMPRESSION) { | |||
level = 6; | |||
} | |||
if (windowBits < 0) { /* suppress zlib wrapper */ | |||
wrap = 0; | |||
windowBits = -windowBits; | |||
} | |||
else if (windowBits > 15) { | |||
wrap = 2; /* write gzip wrapper instead */ | |||
windowBits -= 16; | |||
} | |||
if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method !== Z_DEFLATED || | |||
windowBits < 8 || windowBits > 15 || level < 0 || level > 9 || | |||
strategy < 0 || strategy > Z_FIXED) { | |||
return err(strm, Z_STREAM_ERROR); | |||
} | |||
if (windowBits === 8) { | |||
windowBits = 9; | |||
} | |||
/* until 256-byte window bug fixed */ | |||
var s = new DeflateState(); | |||
strm.state = s; | |||
s.strm = strm; | |||
s.wrap = wrap; | |||
s.gzhead = null; | |||
s.w_bits = windowBits; | |||
s.w_size = 1 << s.w_bits; | |||
s.w_mask = s.w_size - 1; | |||
s.hash_bits = memLevel + 7; | |||
s.hash_size = 1 << s.hash_bits; | |||
s.hash_mask = s.hash_size - 1; | |||
s.hash_shift = ~~((s.hash_bits + MIN_MATCH - 1) / MIN_MATCH); | |||
s.window = new utils.Buf8(s.w_size * 2); | |||
s.head = new utils.Buf16(s.hash_size); | |||
s.prev = new utils.Buf16(s.w_size); | |||
// Don't need mem init magic for JS. | |||
//s.high_water = 0; /* nothing written to s->window yet */ | |||
s.lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ | |||
s.pending_buf_size = s.lit_bufsize * 4; | |||
//overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2); | |||
//s->pending_buf = (uchf *) overlay; | |||
s.pending_buf = new utils.Buf8(s.pending_buf_size); | |||
// It is offset from `s.pending_buf` (size is `s.lit_bufsize * 2`) | |||
//s->d_buf = overlay + s->lit_bufsize/sizeof(ush); | |||
s.d_buf = 1 * s.lit_bufsize; | |||
//s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize; | |||
s.l_buf = (1 + 2) * s.lit_bufsize; | |||
s.level = level; | |||
s.strategy = strategy; | |||
s.method = method; | |||
return deflateReset(strm); | |||
} | |||
function deflateInit(strm, level) { | |||
return deflateInit2(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, Z_DEFAULT_STRATEGY); | |||
} | |||
function deflate(strm, flush) { | |||
var old_flush, s; | |||
var beg, val; // for gzip header write only | |||
if (!strm || !strm.state || | |||
flush > Z_BLOCK || flush < 0) { | |||
return strm ? err(strm, Z_STREAM_ERROR) : Z_STREAM_ERROR; | |||
} | |||
s = strm.state; | |||
if (!strm.output || | |||
(!strm.input && strm.avail_in !== 0) || | |||
(s.status === FINISH_STATE && flush !== Z_FINISH)) { | |||
return err(strm, (strm.avail_out === 0) ? Z_BUF_ERROR : Z_STREAM_ERROR); | |||
} | |||
s.strm = strm; /* just in case */ | |||
old_flush = s.last_flush; | |||
s.last_flush = flush; | |||
/* Write the header */ | |||
if (s.status === INIT_STATE) { | |||
if (s.wrap === 2) { // GZIP header | |||
strm.adler = 0; //crc32(0L, Z_NULL, 0); | |||
put_byte(s, 31); | |||
put_byte(s, 139); | |||
put_byte(s, 8); | |||
if (!s.gzhead) { // s->gzhead == Z_NULL | |||
put_byte(s, 0); | |||
put_byte(s, 0); | |||
put_byte(s, 0); | |||
put_byte(s, 0); | |||
put_byte(s, 0); | |||
put_byte(s, s.level === 9 ? 2 : | |||
(s.strategy >= Z_HUFFMAN_ONLY || s.level < 2 ? | |||
4 : 0)); | |||
put_byte(s, OS_CODE); | |||
s.status = BUSY_STATE; | |||
} | |||
else { | |||
put_byte(s, (s.gzhead.text ? 1 : 0) + | |||
(s.gzhead.hcrc ? 2 : 0) + | |||
(!s.gzhead.extra ? 0 : 4) + | |||
(!s.gzhead.name ? 0 : 8) + | |||
(!s.gzhead.comment ? 0 : 16) | |||
); | |||
put_byte(s, s.gzhead.time & 0xff); | |||
put_byte(s, (s.gzhead.time >> 8) & 0xff); | |||
put_byte(s, (s.gzhead.time >> 16) & 0xff); | |||
put_byte(s, (s.gzhead.time >> 24) & 0xff); | |||
put_byte(s, s.level === 9 ? 2 : | |||
(s.strategy >= Z_HUFFMAN_ONLY || s.level < 2 ? | |||
4 : 0)); | |||
put_byte(s, s.gzhead.os & 0xff); | |||
if (s.gzhead.extra && s.gzhead.extra.length) { | |||
put_byte(s, s.gzhead.extra.length & 0xff); | |||
put_byte(s, (s.gzhead.extra.length >> 8) & 0xff); | |||
} | |||
if (s.gzhead.hcrc) { | |||
strm.adler = crc32(strm.adler, s.pending_buf, s.pending, 0); | |||
} | |||
s.gzindex = 0; | |||
s.status = EXTRA_STATE; | |||
} | |||
} | |||
else // DEFLATE header | |||
{ | |||
var header = (Z_DEFLATED + ((s.w_bits - 8) << 4)) << 8; | |||
var level_flags = -1; | |||
if (s.strategy >= Z_HUFFMAN_ONLY || s.level < 2) { | |||
level_flags = 0; | |||
} else if (s.level < 6) { | |||
level_flags = 1; | |||
} else if (s.level === 6) { | |||
level_flags = 2; | |||
} else { | |||
level_flags = 3; | |||
} | |||
header |= (level_flags << 6); | |||
if (s.strstart !== 0) { header |= PRESET_DICT; } | |||
header += 31 - (header % 31); | |||
s.status = BUSY_STATE; | |||
putShortMSB(s, header); | |||
/* Save the adler32 of the preset dictionary: */ | |||
if (s.strstart !== 0) { | |||
putShortMSB(s, strm.adler >>> 16); | |||
putShortMSB(s, strm.adler & 0xffff); | |||
} | |||
strm.adler = 1; // adler32(0L, Z_NULL, 0); | |||
} | |||
} | |||
//#ifdef GZIP | |||
if (s.status === EXTRA_STATE) { | |||
if (s.gzhead.extra/* != Z_NULL*/) { | |||
beg = s.pending; /* start of bytes to update crc */ | |||
while (s.gzindex < (s.gzhead.extra.length & 0xffff)) { | |||
if (s.pending === s.pending_buf_size) { | |||
if (s.gzhead.hcrc && s.pending > beg) { | |||
strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg); | |||
} | |||
flush_pending(strm); | |||
beg = s.pending; | |||
if (s.pending === s.pending_buf_size) { | |||
break; | |||
} | |||
} | |||
put_byte(s, s.gzhead.extra[s.gzindex] & 0xff); | |||
s.gzindex++; | |||
} | |||
if (s.gzhead.hcrc && s.pending > beg) { | |||
strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg); | |||
} | |||
if (s.gzindex === s.gzhead.extra.length) { | |||
s.gzindex = 0; | |||
s.status = NAME_STATE; | |||
} | |||
} | |||
else { | |||
s.status = NAME_STATE; | |||
} | |||
} | |||
if (s.status === NAME_STATE) { | |||
if (s.gzhead.name/* != Z_NULL*/) { | |||
beg = s.pending; /* start of bytes to update crc */ | |||
//int val; | |||
do { | |||
if (s.pending === s.pending_buf_size) { | |||
if (s.gzhead.hcrc && s.pending > beg) { | |||
strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg); | |||
} | |||
flush_pending(strm); | |||
beg = s.pending; | |||
if (s.pending === s.pending_buf_size) { | |||
val = 1; | |||
break; | |||
} | |||
} | |||
// JS specific: little magic to add zero terminator to end of string | |||
if (s.gzindex < s.gzhead.name.length) { | |||
val = s.gzhead.name.charCodeAt(s.gzindex++) & 0xff; | |||
} else { | |||
val = 0; | |||
} | |||
put_byte(s, val); | |||
} while (val !== 0); | |||
if (s.gzhead.hcrc && s.pending > beg) { | |||
strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg); | |||
} | |||
if (val === 0) { | |||
s.gzindex = 0; | |||
s.status = COMMENT_STATE; | |||
} | |||
} | |||
else { | |||
s.status = COMMENT_STATE; | |||
} | |||
} | |||
if (s.status === COMMENT_STATE) { | |||
if (s.gzhead.comment/* != Z_NULL*/) { | |||
beg = s.pending; /* start of bytes to update crc */ | |||
//int val; | |||
do { | |||
if (s.pending === s.pending_buf_size) { | |||
if (s.gzhead.hcrc && s.pending > beg) { | |||
strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg); | |||
} | |||
flush_pending(strm); | |||
beg = s.pending; | |||
if (s.pending === s.pending_buf_size) { | |||
val = 1; | |||
break; | |||
} | |||
} | |||
// JS specific: little magic to add zero terminator to end of string | |||
if (s.gzindex < s.gzhead.comment.length) { | |||
val = s.gzhead.comment.charCodeAt(s.gzindex++) & 0xff; | |||
} else { | |||
val = 0; | |||
} | |||
put_byte(s, val); | |||
} while (val !== 0); | |||
if (s.gzhead.hcrc && s.pending > beg) { | |||
strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg); | |||
} | |||
if (val === 0) { | |||
s.status = HCRC_STATE; | |||
} | |||
} | |||
else { | |||
s.status = HCRC_STATE; | |||
} | |||
} | |||
if (s.status === HCRC_STATE) { | |||
if (s.gzhead.hcrc) { | |||
if (s.pending + 2 > s.pending_buf_size) { | |||
flush_pending(strm); | |||
} | |||
if (s.pending + 2 <= s.pending_buf_size) { | |||
put_byte(s, strm.adler & 0xff); | |||
put_byte(s, (strm.adler >> 8) & 0xff); | |||
strm.adler = 0; //crc32(0L, Z_NULL, 0); | |||
s.status = BUSY_STATE; | |||
} | |||
} | |||
else { | |||
s.status = BUSY_STATE; | |||
} | |||
} | |||
//#endif | |||
/* Flush as much pending output as possible */ | |||
if (s.pending !== 0) { | |||
flush_pending(strm); | |||
if (strm.avail_out === 0) { | |||
/* Since avail_out is 0, deflate will be called again with | |||
* more output space, but possibly with both pending and | |||
* avail_in equal to zero. There won't be anything to do, | |||
* but this is not an error situation so make sure we | |||
* return OK instead of BUF_ERROR at next call of deflate: | |||
*/ | |||
s.last_flush = -1; | |||
return Z_OK; | |||
} | |||
/* Make sure there is something to do and avoid duplicate consecutive | |||
* flushes. For repeated and useless calls with Z_FINISH, we keep | |||
* returning Z_STREAM_END instead of Z_BUF_ERROR. | |||
*/ | |||
} else if (strm.avail_in === 0 && rank(flush) <= rank(old_flush) && | |||
flush !== Z_FINISH) { | |||
return err(strm, Z_BUF_ERROR); | |||
} | |||
/* User must not provide more input after the first FINISH: */ | |||
if (s.status === FINISH_STATE && strm.avail_in !== 0) { | |||
return err(strm, Z_BUF_ERROR); | |||
} | |||
/* Start a new block or continue the current one. | |||
*/ | |||
if (strm.avail_in !== 0 || s.lookahead !== 0 || | |||
(flush !== Z_NO_FLUSH && s.status !== FINISH_STATE)) { | |||
var bstate = (s.strategy === Z_HUFFMAN_ONLY) ? deflate_huff(s, flush) : | |||
(s.strategy === Z_RLE ? deflate_rle(s, flush) : | |||
configuration_table[s.level].func(s, flush)); | |||
if (bstate === BS_FINISH_STARTED || bstate === BS_FINISH_DONE) { | |||
s.status = FINISH_STATE; | |||
} | |||
if (bstate === BS_NEED_MORE || bstate === BS_FINISH_STARTED) { | |||
if (strm.avail_out === 0) { | |||
s.last_flush = -1; | |||
/* avoid BUF_ERROR next call, see above */ | |||
} | |||
return Z_OK; | |||
/* If flush != Z_NO_FLUSH && avail_out == 0, the next call | |||
* of deflate should use the same flush parameter to make sure | |||
* that the flush is complete. So we don't have to output an | |||
* empty block here, this will be done at next call. This also | |||
* ensures that for a very small output buffer, we emit at most | |||
* one empty block. | |||
*/ | |||
} | |||
if (bstate === BS_BLOCK_DONE) { | |||
if (flush === Z_PARTIAL_FLUSH) { | |||
trees._tr_align(s); | |||
} | |||
else if (flush !== Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */ | |||
trees._tr_stored_block(s, 0, 0, false); | |||
/* For a full flush, this empty block will be recognized | |||
* as a special marker by inflate_sync(). | |||
*/ | |||
if (flush === Z_FULL_FLUSH) { | |||
/*** CLEAR_HASH(s); ***/ /* forget history */ | |||
zero(s.head); // Fill with NIL (= 0); | |||
if (s.lookahead === 0) { | |||
s.strstart = 0; | |||
s.block_start = 0; | |||
s.insert = 0; | |||
} | |||
} | |||
} | |||
flush_pending(strm); | |||
if (strm.avail_out === 0) { | |||
s.last_flush = -1; /* avoid BUF_ERROR at next call, see above */ | |||
return Z_OK; | |||
} | |||
} | |||
} | |||
//Assert(strm->avail_out > 0, "bug2"); | |||
//if (strm.avail_out <= 0) { throw new Error("bug2");} | |||
if (flush !== Z_FINISH) { return Z_OK; } | |||
if (s.wrap <= 0) { return Z_STREAM_END; } | |||
/* Write the trailer */ | |||
if (s.wrap === 2) { | |||
put_byte(s, strm.adler & 0xff); | |||
put_byte(s, (strm.adler >> 8) & 0xff); | |||
put_byte(s, (strm.adler >> 16) & 0xff); | |||
put_byte(s, (strm.adler >> 24) & 0xff); | |||
put_byte(s, strm.total_in & 0xff); | |||
put_byte(s, (strm.total_in >> 8) & 0xff); | |||
put_byte(s, (strm.total_in >> 16) & 0xff); | |||
put_byte(s, (strm.total_in >> 24) & 0xff); | |||
} | |||
else | |||
{ | |||
putShortMSB(s, strm.adler >>> 16); | |||
putShortMSB(s, strm.adler & 0xffff); | |||
} | |||
flush_pending(strm); | |||
/* If avail_out is zero, the application will call deflate again | |||
* to flush the rest. | |||
*/ | |||
if (s.wrap > 0) { s.wrap = -s.wrap; } | |||
/* write the trailer only once! */ | |||
return s.pending !== 0 ? Z_OK : Z_STREAM_END; | |||
} | |||
function deflateEnd(strm) { | |||
var status; | |||
if (!strm/*== Z_NULL*/ || !strm.state/*== Z_NULL*/) { | |||
return Z_STREAM_ERROR; | |||
} | |||
status = strm.state.status; | |||
if (status !== INIT_STATE && | |||
status !== EXTRA_STATE && | |||
status !== NAME_STATE && | |||
status !== COMMENT_STATE && | |||
status !== HCRC_STATE && | |||
status !== BUSY_STATE && | |||
status !== FINISH_STATE | |||
) { | |||
return err(strm, Z_STREAM_ERROR); | |||
} | |||
strm.state = null; | |||
return status === BUSY_STATE ? err(strm, Z_DATA_ERROR) : Z_OK; | |||
} | |||
/* ========================================================================= | |||
* Initializes the compression dictionary from the given byte | |||
* sequence without producing any compressed output. | |||
*/ | |||
function deflateSetDictionary(strm, dictionary) { | |||
var dictLength = dictionary.length; | |||
var s; | |||
var str, n; | |||
var wrap; | |||
var avail; | |||
var next; | |||
var input; | |||
var tmpDict; | |||
if (!strm/*== Z_NULL*/ || !strm.state/*== Z_NULL*/) { | |||
return Z_STREAM_ERROR; | |||
} | |||
s = strm.state; | |||
wrap = s.wrap; | |||
if (wrap === 2 || (wrap === 1 && s.status !== INIT_STATE) || s.lookahead) { | |||
return Z_STREAM_ERROR; | |||
} | |||
/* when using zlib wrappers, compute Adler-32 for provided dictionary */ | |||
if (wrap === 1) { | |||
/* adler32(strm->adler, dictionary, dictLength); */ | |||
strm.adler = adler32(strm.adler, dictionary, dictLength, 0); | |||
} | |||
s.wrap = 0; /* avoid computing Adler-32 in read_buf */ | |||
/* if dictionary would fill window, just replace the history */ | |||
if (dictLength >= s.w_size) { | |||
if (wrap === 0) { /* already empty otherwise */ | |||
/*** CLEAR_HASH(s); ***/ | |||
zero(s.head); // Fill with NIL (= 0); | |||
s.strstart = 0; | |||
s.block_start = 0; | |||
s.insert = 0; | |||
} | |||
/* use the tail */ | |||
// dictionary = dictionary.slice(dictLength - s.w_size); | |||
tmpDict = new utils.Buf8(s.w_size); | |||
utils.arraySet(tmpDict, dictionary, dictLength - s.w_size, s.w_size, 0); | |||
dictionary = tmpDict; | |||
dictLength = s.w_size; | |||
} | |||
/* insert dictionary into window and hash */ | |||
avail = strm.avail_in; | |||
next = strm.next_in; | |||
input = strm.input; | |||
strm.avail_in = dictLength; | |||
strm.next_in = 0; | |||
strm.input = dictionary; | |||
fill_window(s); | |||
while (s.lookahead >= MIN_MATCH) { | |||
str = s.strstart; | |||
n = s.lookahead - (MIN_MATCH - 1); | |||
do { | |||
/* UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); */ | |||
s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[str + MIN_MATCH - 1]) & s.hash_mask; | |||
s.prev[str & s.w_mask] = s.head[s.ins_h]; | |||
s.head[s.ins_h] = str; | |||
str++; | |||
} while (--n); | |||
s.strstart = str; | |||
s.lookahead = MIN_MATCH - 1; | |||
fill_window(s); | |||
} | |||
s.strstart += s.lookahead; | |||
s.block_start = s.strstart; | |||
s.insert = s.lookahead; | |||
s.lookahead = 0; | |||
s.match_length = s.prev_length = MIN_MATCH - 1; | |||
s.match_available = 0; | |||
strm.next_in = next; | |||
strm.input = input; | |||
strm.avail_in = avail; | |||
s.wrap = wrap; | |||
return Z_OK; | |||
} | |||
exports.deflateInit = deflateInit; | |||
exports.deflateInit2 = deflateInit2; | |||
exports.deflateReset = deflateReset; | |||
exports.deflateResetKeep = deflateResetKeep; | |||
exports.deflateSetHeader = deflateSetHeader; | |||
exports.deflate = deflate; | |||
exports.deflateEnd = deflateEnd; | |||
exports.deflateSetDictionary = deflateSetDictionary; | |||
exports.deflateInfo = 'pako deflate (from Nodeca project)'; | |||
/* Not implemented | |||
exports.deflateBound = deflateBound; | |||
exports.deflateCopy = deflateCopy; | |||
exports.deflateParams = deflateParams; | |||
exports.deflatePending = deflatePending; | |||
exports.deflatePrime = deflatePrime; | |||
exports.deflateTune = deflateTune; | |||
*/ | |||
},{"../utils/common":1,"./adler32":3,"./crc32":4,"./messages":6,"./trees":7}],6:[function(require,module,exports){ | |||
'use strict'; | |||
module.exports = { | |||
2: 'need dictionary', /* Z_NEED_DICT 2 */ | |||
1: 'stream end', /* Z_STREAM_END 1 */ | |||
0: '', /* Z_OK 0 */ | |||
'-1': 'file error', /* Z_ERRNO (-1) */ | |||
'-2': 'stream error', /* Z_STREAM_ERROR (-2) */ | |||
'-3': 'data error', /* Z_DATA_ERROR (-3) */ | |||
'-4': 'insufficient memory', /* Z_MEM_ERROR (-4) */ | |||
'-5': 'buffer error', /* Z_BUF_ERROR (-5) */ | |||
'-6': 'incompatible version' /* Z_VERSION_ERROR (-6) */ | |||
}; | |||
},{}],7:[function(require,module,exports){ | |||
'use strict'; | |||
var utils = require('../utils/common'); | |||
/* Public constants ==========================================================*/ | |||
/* ===========================================================================*/ | |||
//var Z_FILTERED = 1; | |||
//var Z_HUFFMAN_ONLY = 2; | |||
//var Z_RLE = 3; | |||
var Z_FIXED = 4; | |||
//var Z_DEFAULT_STRATEGY = 0; | |||
/* Possible values of the data_type field (though see inflate()) */ | |||
var Z_BINARY = 0; | |||
var Z_TEXT = 1; | |||
//var Z_ASCII = 1; // = Z_TEXT | |||
var Z_UNKNOWN = 2; | |||
/*============================================================================*/ | |||
function zero(buf) { var len = buf.length; while (--len >= 0) { buf[len] = 0; } } | |||
// From zutil.h | |||
var STORED_BLOCK = 0; | |||
var STATIC_TREES = 1; | |||
var DYN_TREES = 2; | |||
/* The three kinds of block type */ | |||
var MIN_MATCH = 3; | |||
var MAX_MATCH = 258; | |||
/* The minimum and maximum match lengths */ | |||
// From deflate.h | |||
/* =========================================================================== | |||
* Internal compression state. | |||
*/ | |||
var LENGTH_CODES = 29; | |||
/* number of length codes, not counting the special END_BLOCK code */ | |||
var LITERALS = 256; | |||
/* number of literal bytes 0..255 */ | |||
var L_CODES = LITERALS + 1 + LENGTH_CODES; | |||
/* number of Literal or Length codes, including the END_BLOCK code */ | |||
var D_CODES = 30; | |||
/* number of distance codes */ | |||
var BL_CODES = 19; | |||
/* number of codes used to transfer the bit lengths */ | |||
var HEAP_SIZE = 2 * L_CODES + 1; | |||
/* maximum heap size */ | |||
var MAX_BITS = 15; | |||
/* All codes must not exceed MAX_BITS bits */ | |||
var Buf_size = 16; | |||
/* size of bit buffer in bi_buf */ | |||
/* =========================================================================== | |||
* Constants | |||
*/ | |||
var MAX_BL_BITS = 7; | |||
/* Bit length codes must not exceed MAX_BL_BITS bits */ | |||
var END_BLOCK = 256; | |||
/* end of block literal code */ | |||
var REP_3_6 = 16; | |||
/* repeat previous bit length 3-6 times (2 bits of repeat count) */ | |||
var REPZ_3_10 = 17; | |||
/* repeat a zero length 3-10 times (3 bits of repeat count) */ | |||
var REPZ_11_138 = 18; | |||
/* repeat a zero length 11-138 times (7 bits of repeat count) */ | |||
/* eslint-disable comma-spacing,array-bracket-spacing */ | |||
var extra_lbits = /* extra bits for each length code */ | |||
[0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0]; | |||
var extra_dbits = /* extra bits for each distance code */ | |||
[0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13]; | |||
var extra_blbits = /* extra bits for each bit length code */ | |||
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7]; | |||
var bl_order = | |||
[16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15]; | |||
/* eslint-enable comma-spacing,array-bracket-spacing */ | |||
/* The lengths of the bit length codes are sent in order of decreasing | |||
* probability, to avoid transmitting the lengths for unused bit length codes. | |||
*/ | |||
/* =========================================================================== | |||
* Local data. These are initialized only once. | |||
*/ | |||
// We pre-fill arrays with 0 to avoid uninitialized gaps | |||
var DIST_CODE_LEN = 512; /* see definition of array dist_code below */ | |||
// !!!! Use flat array insdead of structure, Freq = i*2, Len = i*2+1 | |||
var static_ltree = new Array((L_CODES + 2) * 2); | |||
zero(static_ltree); | |||
/* The static literal tree. Since the bit lengths are imposed, there is no | |||
* need for the L_CODES extra codes used during heap construction. However | |||
* The codes 286 and 287 are needed to build a canonical tree (see _tr_init | |||
* below). | |||
*/ | |||
var static_dtree = new Array(D_CODES * 2); | |||
zero(static_dtree); | |||
/* The static distance tree. (Actually a trivial tree since all codes use | |||
* 5 bits.) | |||
*/ | |||
var _dist_code = new Array(DIST_CODE_LEN); | |||
zero(_dist_code); | |||
/* Distance codes. The first 256 values correspond to the distances | |||
* 3 .. 258, the last 256 values correspond to the top 8 bits of | |||
* the 15 bit distances. | |||
*/ | |||
var _length_code = new Array(MAX_MATCH - MIN_MATCH + 1); | |||
zero(_length_code); | |||
/* length code for each normalized match length (0 == MIN_MATCH) */ | |||
var base_length = new Array(LENGTH_CODES); | |||
zero(base_length); | |||
/* First normalized length for each code (0 = MIN_MATCH) */ | |||
var base_dist = new Array(D_CODES); | |||
zero(base_dist); | |||
/* First normalized distance for each code (0 = distance of 1) */ | |||
function StaticTreeDesc(static_tree, extra_bits, extra_base, elems, max_length) { | |||
this.static_tree = static_tree; /* static tree or NULL */ | |||
this.extra_bits = extra_bits; /* extra bits for each code or NULL */ | |||
this.extra_base = extra_base; /* base index for extra_bits */ | |||
this.elems = elems; /* max number of elements in the tree */ | |||
this.max_length = max_length; /* max bit length for the codes */ | |||
// show if `static_tree` has data or dummy - needed for monomorphic objects | |||
this.has_stree = static_tree && static_tree.length; | |||
} | |||
var static_l_desc; | |||
var static_d_desc; | |||
var static_bl_desc; | |||
function TreeDesc(dyn_tree, stat_desc) { | |||
this.dyn_tree = dyn_tree; /* the dynamic tree */ | |||
this.max_code = 0; /* largest code with non zero frequency */ | |||
this.stat_desc = stat_desc; /* the corresponding static tree */ | |||
} | |||
function d_code(dist) { | |||
return dist < 256 ? _dist_code[dist] : _dist_code[256 + (dist >>> 7)]; | |||
} | |||
/* =========================================================================== | |||
* Output a short LSB first on the stream. | |||
* IN assertion: there is enough room in pendingBuf. | |||
*/ | |||
function put_short(s, w) { | |||
// put_byte(s, (uch)((w) & 0xff)); | |||
// put_byte(s, (uch)((ush)(w) >> 8)); | |||
s.pending_buf[s.pending++] = (w) & 0xff; | |||
s.pending_buf[s.pending++] = (w >>> 8) & 0xff; | |||
} | |||
/* =========================================================================== | |||
* Send a value on a given number of bits. | |||
* IN assertion: length <= 16 and value fits in length bits. | |||
*/ | |||
function send_bits(s, value, length) { | |||
if (s.bi_valid > (Buf_size - length)) { | |||
s.bi_buf |= (value << s.bi_valid) & 0xffff; | |||
put_short(s, s.bi_buf); | |||
s.bi_buf = value >> (Buf_size - s.bi_valid); | |||
s.bi_valid += length - Buf_size; | |||
} else { | |||
s.bi_buf |= (value << s.bi_valid) & 0xffff; | |||
s.bi_valid += length; | |||
} | |||
} | |||
function send_code(s, c, tree) { | |||
send_bits(s, tree[c * 2]/*.Code*/, tree[c * 2 + 1]/*.Len*/); | |||
} | |||
/* =========================================================================== | |||
* Reverse the first len bits of a code, using straightforward code (a faster | |||
* method would use a table) | |||
* IN assertion: 1 <= len <= 15 | |||
*/ | |||
function bi_reverse(code, len) { | |||
var res = 0; | |||
do { | |||
res |= code & 1; | |||
code >>>= 1; | |||
res <<= 1; | |||
} while (--len > 0); | |||
return res >>> 1; | |||
} | |||
/* =========================================================================== | |||
* Flush the bit buffer, keeping at most 7 bits in it. | |||
*/ | |||
function bi_flush(s) { | |||
if (s.bi_valid === 16) { | |||
put_short(s, s.bi_buf); | |||
s.bi_buf = 0; | |||
s.bi_valid = 0; | |||
} else if (s.bi_valid >= 8) { | |||
s.pending_buf[s.pending++] = s.bi_buf & 0xff; | |||
s.bi_buf >>= 8; | |||
s.bi_valid -= 8; | |||
} | |||
} | |||
/* =========================================================================== | |||
* Compute the optimal bit lengths for a tree and update the total bit length | |||
* for the current block. | |||
* IN assertion: the fields freq and dad are set, heap[heap_max] and | |||
* above are the tree nodes sorted by increasing frequency. | |||
* OUT assertions: the field len is set to the optimal bit length, the | |||
* array bl_count contains the frequencies for each bit length. | |||
* The length opt_len is updated; static_len is also updated if stree is | |||
* not null. | |||
*/ | |||
function gen_bitlen(s, desc) | |||
// deflate_state *s; | |||
// tree_desc *desc; /* the tree descriptor */ | |||
{ | |||
var tree = desc.dyn_tree; | |||
var max_code = desc.max_code; | |||
var stree = desc.stat_desc.static_tree; | |||
var has_stree = desc.stat_desc.has_stree; | |||
var extra = desc.stat_desc.extra_bits; | |||
var base = desc.stat_desc.extra_base; | |||
var max_length = desc.stat_desc.max_length; | |||
var h; /* heap index */ | |||
var n, m; /* iterate over the tree elements */ | |||
var bits; /* bit length */ | |||
var xbits; /* extra bits */ | |||
var f; /* frequency */ | |||
var overflow = 0; /* number of elements with bit length too large */ | |||
for (bits = 0; bits <= MAX_BITS; bits++) { | |||
s.bl_count[bits] = 0; | |||
} | |||
/* In a first pass, compute the optimal bit lengths (which may | |||
* overflow in the case of the bit length tree). | |||
*/ | |||
tree[s.heap[s.heap_max] * 2 + 1]/*.Len*/ = 0; /* root of the heap */ | |||
for (h = s.heap_max + 1; h < HEAP_SIZE; h++) { | |||
n = s.heap[h]; | |||
bits = tree[tree[n * 2 + 1]/*.Dad*/ * 2 + 1]/*.Len*/ + 1; | |||
if (bits > max_length) { | |||
bits = max_length; | |||
overflow++; | |||
} | |||
tree[n * 2 + 1]/*.Len*/ = bits; | |||
/* We overwrite tree[n].Dad which is no longer needed */ | |||
if (n > max_code) { continue; } /* not a leaf node */ | |||
s.bl_count[bits]++; | |||
xbits = 0; | |||
if (n >= base) { | |||
xbits = extra[n - base]; | |||
} | |||
f = tree[n * 2]/*.Freq*/; | |||
s.opt_len += f * (bits + xbits); | |||
if (has_stree) { | |||
s.static_len += f * (stree[n * 2 + 1]/*.Len*/ + xbits); | |||
} | |||
} | |||
if (overflow === 0) { return; } | |||
// Trace((stderr,"\nbit length overflow\n")); | |||
/* This happens for example on obj2 and pic of the Calgary corpus */ | |||
/* Find the first bit length which could increase: */ | |||
do { | |||
bits = max_length - 1; | |||
while (s.bl_count[bits] === 0) { bits--; } | |||
s.bl_count[bits]--; /* move one leaf down the tree */ | |||
s.bl_count[bits + 1] += 2; /* move one overflow item as its brother */ | |||
s.bl_count[max_length]--; | |||
/* The brother of the overflow item also moves one step up, | |||
* but this does not affect bl_count[max_length] | |||
*/ | |||
overflow -= 2; | |||
} while (overflow > 0); | |||
/* Now recompute all bit lengths, scanning in increasing frequency. | |||
* h is still equal to HEAP_SIZE. (It is simpler to reconstruct all | |||
* lengths instead of fixing only the wrong ones. This idea is taken | |||
* from 'ar' written by Haruhiko Okumura.) | |||
*/ | |||
for (bits = max_length; bits !== 0; bits--) { | |||
n = s.bl_count[bits]; | |||
while (n !== 0) { | |||
m = s.heap[--h]; | |||
if (m > max_code) { continue; } | |||
if (tree[m * 2 + 1]/*.Len*/ !== bits) { | |||
// Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); | |||
s.opt_len += (bits - tree[m * 2 + 1]/*.Len*/) * tree[m * 2]/*.Freq*/; | |||
tree[m * 2 + 1]/*.Len*/ = bits; | |||
} | |||
n--; | |||
} | |||
} | |||
} | |||
/* =========================================================================== | |||
* Generate the codes for a given tree and bit counts (which need not be | |||
* optimal). | |||
* IN assertion: the array bl_count contains the bit length statistics for | |||
* the given tree and the field len is set for all tree elements. | |||
* OUT assertion: the field code is set for all tree elements of non | |||
* zero code length. | |||
*/ | |||
function gen_codes(tree, max_code, bl_count) | |||
// ct_data *tree; /* the tree to decorate */ | |||
// int max_code; /* largest code with non zero frequency */ | |||
// ushf *bl_count; /* number of codes at each bit length */ | |||
{ | |||
var next_code = new Array(MAX_BITS + 1); /* next code value for each bit length */ | |||
var code = 0; /* running code value */ | |||
var bits; /* bit index */ | |||
var n; /* code index */ | |||
/* The distribution counts are first used to generate the code values | |||
* without bit reversal. | |||
*/ | |||
for (bits = 1; bits <= MAX_BITS; bits++) { | |||
next_code[bits] = code = (code + bl_count[bits - 1]) << 1; | |||
} | |||
/* Check that the bit counts in bl_count are consistent. The last code | |||
* must be all ones. | |||
*/ | |||
//Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1, | |||
// "inconsistent bit counts"); | |||
//Tracev((stderr,"\ngen_codes: max_code %d ", max_code)); | |||
for (n = 0; n <= max_code; n++) { | |||
var len = tree[n * 2 + 1]/*.Len*/; | |||
if (len === 0) { continue; } | |||
/* Now reverse the bits */ | |||
tree[n * 2]/*.Code*/ = bi_reverse(next_code[len]++, len); | |||
//Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ", | |||
// n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1)); | |||
} | |||
} | |||
/* =========================================================================== | |||
* Initialize the various 'constant' tables. | |||
*/ | |||
function tr_static_init() { | |||
var n; /* iterates over tree elements */ | |||
var bits; /* bit counter */ | |||
var length; /* length value */ | |||
var code; /* code value */ | |||
var dist; /* distance index */ | |||
var bl_count = new Array(MAX_BITS + 1); | |||
/* number of codes at each bit length for an optimal tree */ | |||
// do check in _tr_init() | |||
//if (static_init_done) return; | |||
/* For some embedded targets, global variables are not initialized: */ | |||
/*#ifdef NO_INIT_GLOBAL_POINTERS | |||
static_l_desc.static_tree = static_ltree; | |||
static_l_desc.extra_bits = extra_lbits; | |||
static_d_desc.static_tree = static_dtree; | |||
static_d_desc.extra_bits = extra_dbits; | |||
static_bl_desc.extra_bits = extra_blbits; | |||
#endif*/ | |||
/* Initialize the mapping length (0..255) -> length code (0..28) */ | |||
length = 0; | |||
for (code = 0; code < LENGTH_CODES - 1; code++) { | |||
base_length[code] = length; | |||
for (n = 0; n < (1 << extra_lbits[code]); n++) { | |||
_length_code[length++] = code; | |||
} | |||
} | |||
//Assert (length == 256, "tr_static_init: length != 256"); | |||
/* Note that the length 255 (match length 258) can be represented | |||
* in two different ways: code 284 + 5 bits or code 285, so we | |||
* overwrite length_code[255] to use the best encoding: | |||
*/ | |||
_length_code[length - 1] = code; | |||
/* Initialize the mapping dist (0..32K) -> dist code (0..29) */ | |||
dist = 0; | |||
for (code = 0; code < 16; code++) { | |||
base_dist[code] = dist; | |||
for (n = 0; n < (1 << extra_dbits[code]); n++) { | |||
_dist_code[dist++] = code; | |||
} | |||
} | |||
//Assert (dist == 256, "tr_static_init: dist != 256"); | |||
dist >>= 7; /* from now on, all distances are divided by 128 */ | |||
for (; code < D_CODES; code++) { | |||
base_dist[code] = dist << 7; | |||
for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) { | |||
_dist_code[256 + dist++] = code; | |||
} | |||
} | |||
//Assert (dist == 256, "tr_static_init: 256+dist != 512"); | |||
/* Construct the codes of the static literal tree */ | |||
for (bits = 0; bits <= MAX_BITS; bits++) { | |||
bl_count[bits] = 0; | |||
} | |||
n = 0; | |||
while (n <= 143) { | |||
static_ltree[n * 2 + 1]/*.Len*/ = 8; | |||
n++; | |||
bl_count[8]++; | |||
} | |||
while (n <= 255) { | |||
static_ltree[n * 2 + 1]/*.Len*/ = 9; | |||
n++; | |||
bl_count[9]++; | |||
} | |||
while (n <= 279) { | |||
static_ltree[n * 2 + 1]/*.Len*/ = 7; | |||
n++; | |||
bl_count[7]++; | |||
} | |||
while (n <= 287) { | |||
static_ltree[n * 2 + 1]/*.Len*/ = 8; | |||
n++; | |||
bl_count[8]++; | |||
} | |||
/* Codes 286 and 287 do not exist, but we must include them in the | |||
* tree construction to get a canonical Huffman tree (longest code | |||
* all ones) | |||
*/ | |||
gen_codes(static_ltree, L_CODES + 1, bl_count); | |||
/* The static distance tree is trivial: */ | |||
for (n = 0; n < D_CODES; n++) { | |||
static_dtree[n * 2 + 1]/*.Len*/ = 5; | |||
static_dtree[n * 2]/*.Code*/ = bi_reverse(n, 5); | |||
} | |||
// Now data ready and we can init static trees | |||
static_l_desc = new StaticTreeDesc(static_ltree, extra_lbits, LITERALS + 1, L_CODES, MAX_BITS); | |||
static_d_desc = new StaticTreeDesc(static_dtree, extra_dbits, 0, D_CODES, MAX_BITS); | |||
static_bl_desc = new StaticTreeDesc(new Array(0), extra_blbits, 0, BL_CODES, MAX_BL_BITS); | |||
//static_init_done = true; | |||
} | |||
/* =========================================================================== | |||
* Initialize a new block. | |||
*/ | |||
function init_block(s) { | |||
var n; /* iterates over tree elements */ | |||
/* Initialize the trees. */ | |||
for (n = 0; n < L_CODES; n++) { s.dyn_ltree[n * 2]/*.Freq*/ = 0; } | |||
for (n = 0; n < D_CODES; n++) { s.dyn_dtree[n * 2]/*.Freq*/ = 0; } | |||
for (n = 0; n < BL_CODES; n++) { s.bl_tree[n * 2]/*.Freq*/ = 0; } | |||
s.dyn_ltree[END_BLOCK * 2]/*.Freq*/ = 1; | |||
s.opt_len = s.static_len = 0; | |||
s.last_lit = s.matches = 0; | |||
} | |||
/* =========================================================================== | |||
* Flush the bit buffer and align the output on a byte boundary | |||
*/ | |||
function bi_windup(s) | |||
{ | |||
if (s.bi_valid > 8) { | |||
put_short(s, s.bi_buf); | |||
} else if (s.bi_valid > 0) { | |||
//put_byte(s, (Byte)s->bi_buf); | |||
s.pending_buf[s.pending++] = s.bi_buf; | |||
} | |||
s.bi_buf = 0; | |||
s.bi_valid = 0; | |||
} | |||
/* =========================================================================== | |||
* Copy a stored block, storing first the length and its | |||
* one's complement if requested. | |||
*/ | |||
function copy_block(s, buf, len, header) | |||
//DeflateState *s; | |||
//charf *buf; /* the input data */ | |||
//unsigned len; /* its length */ | |||
//int header; /* true if block header must be written */ | |||
{ | |||
bi_windup(s); /* align on byte boundary */ | |||
if (header) { | |||
put_short(s, len); | |||
put_short(s, ~len); | |||
} | |||
// while (len--) { | |||
// put_byte(s, *buf++); | |||
// } | |||
utils.arraySet(s.pending_buf, s.window, buf, len, s.pending); | |||
s.pending += len; | |||
} | |||
/* =========================================================================== | |||
* Compares to subtrees, using the tree depth as tie breaker when | |||
* the subtrees have equal frequency. This minimizes the worst case length. | |||
*/ | |||
function smaller(tree, n, m, depth) { | |||
var _n2 = n * 2; | |||
var _m2 = m * 2; | |||
return (tree[_n2]/*.Freq*/ < tree[_m2]/*.Freq*/ || | |||
(tree[_n2]/*.Freq*/ === tree[_m2]/*.Freq*/ && depth[n] <= depth[m])); | |||
} | |||
/* =========================================================================== | |||
* Restore the heap property by moving down the tree starting at node k, | |||
* exchanging a node with the smallest of its two sons if necessary, stopping | |||
* when the heap property is re-established (each father smaller than its | |||
* two sons). | |||
*/ | |||
function pqdownheap(s, tree, k) | |||
// deflate_state *s; | |||
// ct_data *tree; /* the tree to restore */ | |||
// int k; /* node to move down */ | |||
{ | |||
var v = s.heap[k]; | |||
var j = k << 1; /* left son of k */ | |||
while (j <= s.heap_len) { | |||
/* Set j to the smallest of the two sons: */ | |||
if (j < s.heap_len && | |||
smaller(tree, s.heap[j + 1], s.heap[j], s.depth)) { | |||
j++; | |||
} | |||
/* Exit if v is smaller than both sons */ | |||
if (smaller(tree, v, s.heap[j], s.depth)) { break; } | |||
/* Exchange v with the smallest son */ | |||
s.heap[k] = s.heap[j]; | |||
k = j; | |||
/* And continue down the tree, setting j to the left son of k */ | |||
j <<= 1; | |||
} | |||
s.heap[k] = v; | |||
} | |||
// inlined manually | |||
// var SMALLEST = 1; | |||
/* =========================================================================== | |||
* Send the block data compressed using the given Huffman trees | |||
*/ | |||
function compress_block(s, ltree, dtree) | |||
// deflate_state *s; | |||
// const ct_data *ltree; /* literal tree */ | |||
// const ct_data *dtree; /* distance tree */ | |||
{ | |||
var dist; /* distance of matched string */ | |||
var lc; /* match length or unmatched char (if dist == 0) */ | |||
var lx = 0; /* running index in l_buf */ | |||
var code; /* the code to send */ | |||
var extra; /* number of extra bits to send */ | |||
if (s.last_lit !== 0) { | |||
do { | |||
dist = (s.pending_buf[s.d_buf + lx * 2] << 8) | (s.pending_buf[s.d_buf + lx * 2 + 1]); | |||
lc = s.pending_buf[s.l_buf + lx]; | |||
lx++; | |||
if (dist === 0) { | |||
send_code(s, lc, ltree); /* send a literal byte */ | |||
//Tracecv(isgraph(lc), (stderr," '%c' ", lc)); | |||
} else { | |||
/* Here, lc is the match length - MIN_MATCH */ | |||
code = _length_code[lc]; | |||
send_code(s, code + LITERALS + 1, ltree); /* send the length code */ | |||
extra = extra_lbits[code]; | |||
if (extra !== 0) { | |||
lc -= base_length[code]; | |||
send_bits(s, lc, extra); /* send the extra length bits */ | |||
} | |||
dist--; /* dist is now the match distance - 1 */ | |||
code = d_code(dist); | |||
//Assert (code < D_CODES, "bad d_code"); | |||
send_code(s, code, dtree); /* send the distance code */ | |||
extra = extra_dbits[code]; | |||
if (extra !== 0) { | |||
dist -= base_dist[code]; | |||
send_bits(s, dist, extra); /* send the extra distance bits */ | |||
} | |||
} /* literal or match pair ? */ | |||
/* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ | |||
//Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx, | |||
// "pendingBuf overflow"); | |||
} while (lx < s.last_lit); | |||
} | |||
send_code(s, END_BLOCK, ltree); | |||
} | |||
/* =========================================================================== | |||
* Construct one Huffman tree and assigns the code bit strings and lengths. | |||
* Update the total bit length for the current block. | |||
* IN assertion: the field freq is set for all tree elements. | |||
* OUT assertions: the fields len and code are set to the optimal bit length | |||
* and corresponding code. The length opt_len is updated; static_len is | |||
* also updated if stree is not null. The field max_code is set. | |||
*/ | |||
function build_tree(s, desc) | |||
// deflate_state *s; | |||
// tree_desc *desc; /* the tree descriptor */ | |||
{ | |||
var tree = desc.dyn_tree; | |||
var stree = desc.stat_desc.static_tree; | |||
var has_stree = desc.stat_desc.has_stree; | |||
var elems = desc.stat_desc.elems; | |||
var n, m; /* iterate over heap elements */ | |||
var max_code = -1; /* largest code with non zero frequency */ | |||
var node; /* new node being created */ | |||
/* Construct the initial heap, with least frequent element in | |||
* heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. | |||
* heap[0] is not used. | |||
*/ | |||
s.heap_len = 0; | |||
s.heap_max = HEAP_SIZE; | |||
for (n = 0; n < elems; n++) { | |||
if (tree[n * 2]/*.Freq*/ !== 0) { | |||
s.heap[++s.heap_len] = max_code = n; | |||
s.depth[n] = 0; | |||
} else { | |||
tree[n * 2 + 1]/*.Len*/ = 0; | |||
} | |||
} | |||
/* The pkzip format requires that at least one distance code exists, | |||
* and that at least one bit should be sent even if there is only one | |||
* possible code. So to avoid special checks later on we force at least | |||
* two codes of non zero frequency. | |||
*/ | |||
while (s.heap_len < 2) { | |||
node = s.heap[++s.heap_len] = (max_code < 2 ? ++max_code : 0); | |||
tree[node * 2]/*.Freq*/ = 1; | |||
s.depth[node] = 0; | |||
s.opt_len--; | |||
if (has_stree) { | |||
s.static_len -= stree[node * 2 + 1]/*.Len*/; | |||
} | |||
/* node is 0 or 1 so it does not have extra bits */ | |||
} | |||
desc.max_code = max_code; | |||
/* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, | |||
* establish sub-heaps of increasing lengths: | |||
*/ | |||
for (n = (s.heap_len >> 1/*int /2*/); n >= 1; n--) { pqdownheap(s, tree, n); } | |||
/* Construct the Huffman tree by repeatedly combining the least two | |||
* frequent nodes. | |||
*/ | |||
node = elems; /* next internal node of the tree */ | |||
do { | |||
//pqremove(s, tree, n); /* n = node of least frequency */ | |||
/*** pqremove ***/ | |||
n = s.heap[1/*SMALLEST*/]; | |||
s.heap[1/*SMALLEST*/] = s.heap[s.heap_len--]; | |||
pqdownheap(s, tree, 1/*SMALLEST*/); | |||
/***/ | |||
m = s.heap[1/*SMALLEST*/]; /* m = node of next least frequency */ | |||
s.heap[--s.heap_max] = n; /* keep the nodes sorted by frequency */ | |||
s.heap[--s.heap_max] = m; | |||
/* Create a new node father of n and m */ | |||
tree[node * 2]/*.Freq*/ = tree[n * 2]/*.Freq*/ + tree[m * 2]/*.Freq*/; | |||
s.depth[node] = (s.depth[n] >= s.depth[m] ? s.depth[n] : s.depth[m]) + 1; | |||
tree[n * 2 + 1]/*.Dad*/ = tree[m * 2 + 1]/*.Dad*/ = node; | |||
/* and insert the new node in the heap */ | |||
s.heap[1/*SMALLEST*/] = node++; | |||
pqdownheap(s, tree, 1/*SMALLEST*/); | |||
} while (s.heap_len >= 2); | |||
s.heap[--s.heap_max] = s.heap[1/*SMALLEST*/]; | |||
/* At this point, the fields freq and dad are set. We can now | |||
* generate the bit lengths. | |||
*/ | |||
gen_bitlen(s, desc); | |||
/* The field len is now set, we can generate the bit codes */ | |||
gen_codes(tree, max_code, s.bl_count); | |||
} | |||
/* =========================================================================== | |||
* Scan a literal or distance tree to determine the frequencies of the codes | |||
* in the bit length tree. | |||
*/ | |||
function scan_tree(s, tree, max_code) | |||
// deflate_state *s; | |||
// ct_data *tree; /* the tree to be scanned */ | |||
// int max_code; /* and its largest code of non zero frequency */ | |||
{ | |||
var n; /* iterates over all tree elements */ | |||
var prevlen = -1; /* last emitted length */ | |||
var curlen; /* length of current code */ | |||
var nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */ | |||
var count = 0; /* repeat count of the current code */ | |||
var max_count = 7; /* max repeat count */ | |||
var min_count = 4; /* min repeat count */ | |||
if (nextlen === 0) { | |||
max_count = 138; | |||
min_count = 3; | |||
} | |||
tree[(max_code + 1) * 2 + 1]/*.Len*/ = 0xffff; /* guard */ | |||
for (n = 0; n <= max_code; n++) { | |||
curlen = nextlen; | |||
nextlen = tree[(n + 1) * 2 + 1]/*.Len*/; | |||
if (++count < max_count && curlen === nextlen) { | |||
continue; | |||
} else if (count < min_count) { | |||
s.bl_tree[curlen * 2]/*.Freq*/ += count; | |||
} else if (curlen !== 0) { | |||
if (curlen !== prevlen) { s.bl_tree[curlen * 2]/*.Freq*/++; } | |||
s.bl_tree[REP_3_6 * 2]/*.Freq*/++; | |||
} else if (count <= 10) { | |||
s.bl_tree[REPZ_3_10 * 2]/*.Freq*/++; | |||
} else { | |||
s.bl_tree[REPZ_11_138 * 2]/*.Freq*/++; | |||
} | |||
count = 0; | |||
prevlen = curlen; | |||
if (nextlen === 0) { | |||
max_count = 138; | |||
min_count = 3; | |||
} else if (curlen === nextlen) { | |||
max_count = 6; | |||
min_count = 3; | |||
} else { | |||
max_count = 7; | |||
min_count = 4; | |||
} | |||
} | |||
} | |||
/* =========================================================================== | |||
* Send a literal or distance tree in compressed form, using the codes in | |||
* bl_tree. | |||
*/ | |||
function send_tree(s, tree, max_code) | |||
// deflate_state *s; | |||
// ct_data *tree; /* the tree to be scanned */ | |||
// int max_code; /* and its largest code of non zero frequency */ | |||
{ | |||
var n; /* iterates over all tree elements */ | |||
var prevlen = -1; /* last emitted length */ | |||
var curlen; /* length of current code */ | |||
var nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */ | |||
var count = 0; /* repeat count of the current code */ | |||
var max_count = 7; /* max repeat count */ | |||
var min_count = 4; /* min repeat count */ | |||
/* tree[max_code+1].Len = -1; */ /* guard already set */ | |||
if (nextlen === 0) { | |||
max_count = 138; | |||
min_count = 3; | |||
} | |||
for (n = 0; n <= max_code; n++) { | |||
curlen = nextlen; | |||
nextlen = tree[(n + 1) * 2 + 1]/*.Len*/; | |||
if (++count < max_count && curlen === nextlen) { | |||
continue; | |||
} else if (count < min_count) { | |||
do { send_code(s, curlen, s.bl_tree); } while (--count !== 0); | |||
} else if (curlen !== 0) { | |||
if (curlen !== prevlen) { | |||
send_code(s, curlen, s.bl_tree); | |||
count--; | |||
} | |||
//Assert(count >= 3 && count <= 6, " 3_6?"); | |||
send_code(s, REP_3_6, s.bl_tree); | |||
send_bits(s, count - 3, 2); | |||
} else if (count <= 10) { | |||
send_code(s, REPZ_3_10, s.bl_tree); | |||
send_bits(s, count - 3, 3); | |||
} else { | |||
send_code(s, REPZ_11_138, s.bl_tree); | |||
send_bits(s, count - 11, 7); | |||
} | |||
count = 0; | |||
prevlen = curlen; | |||
if (nextlen === 0) { | |||
max_count = 138; | |||
min_count = 3; | |||
} else if (curlen === nextlen) { | |||
max_count = 6; | |||
min_count = 3; | |||
} else { | |||
max_count = 7; | |||
min_count = 4; | |||
} | |||
} | |||
} | |||
/* =========================================================================== | |||
* Construct the Huffman tree for the bit lengths and return the index in | |||
* bl_order of the last bit length code to send. | |||
*/ | |||
function build_bl_tree(s) { | |||
var max_blindex; /* index of last bit length code of non zero freq */ | |||
/* Determine the bit length frequencies for literal and distance trees */ | |||
scan_tree(s, s.dyn_ltree, s.l_desc.max_code); | |||
scan_tree(s, s.dyn_dtree, s.d_desc.max_code); | |||
/* Build the bit length tree: */ | |||
build_tree(s, s.bl_desc); | |||
/* opt_len now includes the length of the tree representations, except | |||
* the lengths of the bit lengths codes and the 5+5+4 bits for the counts. | |||
*/ | |||
/* Determine the number of bit length codes to send. The pkzip format | |||
* requires that at least 4 bit length codes be sent. (appnote.txt says | |||
* 3 but the actual value used is 4.) | |||
*/ | |||
for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) { | |||
if (s.bl_tree[bl_order[max_blindex] * 2 + 1]/*.Len*/ !== 0) { | |||
break; | |||
} | |||
} | |||
/* Update opt_len to include the bit length tree and counts */ | |||
s.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4; | |||
//Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", | |||
// s->opt_len, s->static_len)); | |||
return max_blindex; | |||
} | |||
/* =========================================================================== | |||
* Send the header for a block using dynamic Huffman trees: the counts, the | |||
* lengths of the bit length codes, the literal tree and the distance tree. | |||
* IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. | |||
*/ | |||
function send_all_trees(s, lcodes, dcodes, blcodes) | |||
// deflate_state *s; | |||
// int lcodes, dcodes, blcodes; /* number of codes for each tree */ | |||
{ | |||
var rank; /* index in bl_order */ | |||
//Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); | |||
//Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, | |||
// "too many codes"); | |||
//Tracev((stderr, "\nbl counts: ")); | |||
send_bits(s, lcodes - 257, 5); /* not +255 as stated in appnote.txt */ | |||
send_bits(s, dcodes - 1, 5); | |||
send_bits(s, blcodes - 4, 4); /* not -3 as stated in appnote.txt */ | |||
for (rank = 0; rank < blcodes; rank++) { | |||
//Tracev((stderr, "\nbl code %2d ", bl_order[rank])); | |||
send_bits(s, s.bl_tree[bl_order[rank] * 2 + 1]/*.Len*/, 3); | |||
} | |||
//Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); | |||
send_tree(s, s.dyn_ltree, lcodes - 1); /* literal tree */ | |||
//Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); | |||
send_tree(s, s.dyn_dtree, dcodes - 1); /* distance tree */ | |||
//Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); | |||
} | |||
/* =========================================================================== | |||
* Check if the data type is TEXT or BINARY, using the following algorithm: | |||
* - TEXT if the two conditions below are satisfied: | |||
* a) There are no non-portable control characters belonging to the | |||
* "black list" (0..6, 14..25, 28..31). | |||
* b) There is at least one printable character belonging to the | |||
* "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255). | |||
* - BINARY otherwise. | |||
* - The following partially-portable control characters form a | |||
* "gray list" that is ignored in this detection algorithm: | |||
* (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}). | |||
* IN assertion: the fields Freq of dyn_ltree are set. | |||
*/ | |||
function detect_data_type(s) { | |||
/* black_mask is the bit mask of black-listed bytes | |||
* set bits 0..6, 14..25, and 28..31 | |||
* 0xf3ffc07f = binary 11110011111111111100000001111111 | |||
*/ | |||
var black_mask = 0xf3ffc07f; | |||
var n; | |||
/* Check for non-textual ("black-listed") bytes. */ | |||
for (n = 0; n <= 31; n++, black_mask >>>= 1) { | |||
if ((black_mask & 1) && (s.dyn_ltree[n * 2]/*.Freq*/ !== 0)) { | |||
return Z_BINARY; | |||
} | |||
} | |||
/* Check for textual ("white-listed") bytes. */ | |||
if (s.dyn_ltree[9 * 2]/*.Freq*/ !== 0 || s.dyn_ltree[10 * 2]/*.Freq*/ !== 0 || | |||
s.dyn_ltree[13 * 2]/*.Freq*/ !== 0) { | |||
return Z_TEXT; | |||
} | |||
for (n = 32; n < LITERALS; n++) { | |||
if (s.dyn_ltree[n * 2]/*.Freq*/ !== 0) { | |||
return Z_TEXT; | |||
} | |||
} | |||
/* There are no "black-listed" or "white-listed" bytes: | |||
* this stream either is empty or has tolerated ("gray-listed") bytes only. | |||
*/ | |||
return Z_BINARY; | |||
} | |||
var static_init_done = false; | |||
/* =========================================================================== | |||
* Initialize the tree data structures for a new zlib stream. | |||
*/ | |||
function _tr_init(s) | |||
{ | |||
if (!static_init_done) { | |||
tr_static_init(); | |||
static_init_done = true; | |||
} | |||
s.l_desc = new TreeDesc(s.dyn_ltree, static_l_desc); | |||
s.d_desc = new TreeDesc(s.dyn_dtree, static_d_desc); | |||
s.bl_desc = new TreeDesc(s.bl_tree, static_bl_desc); | |||
s.bi_buf = 0; | |||
s.bi_valid = 0; | |||
/* Initialize the first block of the first file: */ | |||
init_block(s); | |||
} | |||
/* =========================================================================== | |||
* Send a stored block | |||
*/ | |||
function _tr_stored_block(s, buf, stored_len, last) | |||
//DeflateState *s; | |||
//charf *buf; /* input block */ | |||
//ulg stored_len; /* length of input block */ | |||
//int last; /* one if this is the last block for a file */ | |||
{ | |||
send_bits(s, (STORED_BLOCK << 1) + (last ? 1 : 0), 3); /* send block type */ | |||
copy_block(s, buf, stored_len, true); /* with header */ | |||
} | |||
/* =========================================================================== | |||
* Send one empty static block to give enough lookahead for inflate. | |||
* This takes 10 bits, of which 7 may remain in the bit buffer. | |||
*/ | |||
function _tr_align(s) { | |||
send_bits(s, STATIC_TREES << 1, 3); | |||
send_code(s, END_BLOCK, static_ltree); | |||
bi_flush(s); | |||
} | |||
/* =========================================================================== | |||
* Determine the best encoding for the current block: dynamic trees, static | |||
* trees or store, and output the encoded block to the zip file. | |||
*/ | |||
function _tr_flush_block(s, buf, stored_len, last) | |||
//DeflateState *s; | |||
//charf *buf; /* input block, or NULL if too old */ | |||
//ulg stored_len; /* length of input block */ | |||
//int last; /* one if this is the last block for a file */ | |||
{ | |||
var opt_lenb, static_lenb; /* opt_len and static_len in bytes */ | |||
var max_blindex = 0; /* index of last bit length code of non zero freq */ | |||
/* Build the Huffman trees unless a stored block is forced */ | |||
if (s.level > 0) { | |||
/* Check if the file is binary or text */ | |||
if (s.strm.data_type === Z_UNKNOWN) { | |||
s.strm.data_type = detect_data_type(s); | |||
} | |||
/* Construct the literal and distance trees */ | |||
build_tree(s, s.l_desc); | |||
// Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, | |||
// s->static_len)); | |||
build_tree(s, s.d_desc); | |||
// Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, | |||
// s->static_len)); | |||
/* At this point, opt_len and static_len are the total bit lengths of | |||
* the compressed block data, excluding the tree representations. | |||
*/ | |||
/* Build the bit length tree for the above two trees, and get the index | |||
* in bl_order of the last bit length code to send. | |||
*/ | |||
max_blindex = build_bl_tree(s); | |||
/* Determine the best encoding. Compute the block lengths in bytes. */ | |||
opt_lenb = (s.opt_len + 3 + 7) >>> 3; | |||
static_lenb = (s.static_len + 3 + 7) >>> 3; | |||
// Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", | |||
// opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, | |||
// s->last_lit)); | |||
if (static_lenb <= opt_lenb) { opt_lenb = static_lenb; } | |||
} else { | |||
// Assert(buf != (char*)0, "lost buf"); | |||
opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ | |||
} | |||
if ((stored_len + 4 <= opt_lenb) && (buf !== -1)) { | |||
/* 4: two words for the lengths */ | |||
/* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. | |||
* Otherwise we can't have processed more than WSIZE input bytes since | |||
* the last block flush, because compression would have been | |||
* successful. If LIT_BUFSIZE <= WSIZE, it is never too late to | |||
* transform a block into a stored block. | |||
*/ | |||
_tr_stored_block(s, buf, stored_len, last); | |||
} else if (s.strategy === Z_FIXED || static_lenb === opt_lenb) { | |||
send_bits(s, (STATIC_TREES << 1) + (last ? 1 : 0), 3); | |||
compress_block(s, static_ltree, static_dtree); | |||
} else { | |||
send_bits(s, (DYN_TREES << 1) + (last ? 1 : 0), 3); | |||
send_all_trees(s, s.l_desc.max_code + 1, s.d_desc.max_code + 1, max_blindex + 1); | |||
compress_block(s, s.dyn_ltree, s.dyn_dtree); | |||
} | |||
// Assert (s->compressed_len == s->bits_sent, "bad compressed size"); | |||
/* The above check is made mod 2^32, for files larger than 512 MB | |||
* and uLong implemented on 32 bits. | |||
*/ | |||
init_block(s); | |||
if (last) { | |||
bi_windup(s); | |||
} | |||
// Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, | |||
// s->compressed_len-7*last)); | |||
} | |||
/* =========================================================================== | |||
* Save the match info and tally the frequency counts. Return true if | |||
* the current block must be flushed. | |||
*/ | |||
function _tr_tally(s, dist, lc) | |||
// deflate_state *s; | |||
// unsigned dist; /* distance of matched string */ | |||
// unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */ | |||
{ | |||
//var out_length, in_length, dcode; | |||
s.pending_buf[s.d_buf + s.last_lit * 2] = (dist >>> 8) & 0xff; | |||
s.pending_buf[s.d_buf + s.last_lit * 2 + 1] = dist & 0xff; | |||
s.pending_buf[s.l_buf + s.last_lit] = lc & 0xff; | |||
s.last_lit++; | |||
if (dist === 0) { | |||
/* lc is the unmatched char */ | |||
s.dyn_ltree[lc * 2]/*.Freq*/++; | |||
} else { | |||
s.matches++; | |||
/* Here, lc is the match length - MIN_MATCH */ | |||
dist--; /* dist = match distance - 1 */ | |||
//Assert((ush)dist < (ush)MAX_DIST(s) && | |||
// (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && | |||
// (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match"); | |||
s.dyn_ltree[(_length_code[lc] + LITERALS + 1) * 2]/*.Freq*/++; | |||
s.dyn_dtree[d_code(dist) * 2]/*.Freq*/++; | |||
} | |||
// (!) This block is disabled in zlib defailts, | |||
// don't enable it for binary compatibility | |||
//#ifdef TRUNCATE_BLOCK | |||
// /* Try to guess if it is profitable to stop the current block here */ | |||
// if ((s.last_lit & 0x1fff) === 0 && s.level > 2) { | |||
// /* Compute an upper bound for the compressed length */ | |||
// out_length = s.last_lit*8; | |||
// in_length = s.strstart - s.block_start; | |||
// | |||
// for (dcode = 0; dcode < D_CODES; dcode++) { | |||
// out_length += s.dyn_dtree[dcode*2]/*.Freq*/ * (5 + extra_dbits[dcode]); | |||
// } | |||
// out_length >>>= 3; | |||
// //Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", | |||
// // s->last_lit, in_length, out_length, | |||
// // 100L - out_length*100L/in_length)); | |||
// if (s.matches < (s.last_lit>>1)/*int /2*/ && out_length < (in_length>>1)/*int /2*/) { | |||
// return true; | |||
// } | |||
// } | |||
//#endif | |||
return (s.last_lit === s.lit_bufsize - 1); | |||
/* We avoid equality with lit_bufsize because of wraparound at 64K | |||
* on 16 bit machines and because stored blocks are restricted to | |||
* 64K-1 bytes. | |||
*/ | |||
} | |||
exports._tr_init = _tr_init; | |||
exports._tr_stored_block = _tr_stored_block; | |||
exports._tr_flush_block = _tr_flush_block; | |||
exports._tr_tally = _tr_tally; | |||
exports._tr_align = _tr_align; | |||
},{"../utils/common":1}],8:[function(require,module,exports){ | |||
'use strict'; | |||
function ZStream() { | |||
/* next input byte */ | |||
this.input = null; // JS specific, because we have no pointers | |||
this.next_in = 0; | |||
/* number of bytes available at input */ | |||
this.avail_in = 0; | |||
/* total number of input bytes read so far */ | |||
this.total_in = 0; | |||
/* next output byte should be put there */ | |||
this.output = null; // JS specific, because we have no pointers | |||
this.next_out = 0; | |||
/* remaining free space at output */ | |||
this.avail_out = 0; | |||
/* total number of bytes output so far */ | |||
this.total_out = 0; | |||
/* last error message, NULL if no error */ | |||
this.msg = ''/*Z_NULL*/; | |||
/* not visible by applications */ | |||
this.state = null; | |||
/* best guess about the data type: binary or text */ | |||
this.data_type = 2/*Z_UNKNOWN*/; | |||
/* adler32 value of the uncompressed data */ | |||
this.adler = 0; | |||
} | |||
module.exports = ZStream; | |||
},{}],"/lib/deflate.js":[function(require,module,exports){ | |||
'use strict'; | |||
var zlib_deflate = require('./zlib/deflate'); | |||
var utils = require('./utils/common'); | |||
var strings = require('./utils/strings'); | |||
var msg = require('./zlib/messages'); | |||
var ZStream = require('./zlib/zstream'); | |||
var toString = Object.prototype.toString; | |||
/* Public constants ==========================================================*/ | |||
/* ===========================================================================*/ | |||
var Z_NO_FLUSH = 0; | |||
var Z_FINISH = 4; | |||
var Z_OK = 0; | |||
var Z_STREAM_END = 1; | |||
var Z_SYNC_FLUSH = 2; | |||
var Z_DEFAULT_COMPRESSION = -1; | |||
var Z_DEFAULT_STRATEGY = 0; | |||
var Z_DEFLATED = 8; | |||
/* ===========================================================================*/ | |||
/** | |||
* class Deflate | |||
* | |||
* Generic JS-style wrapper for zlib calls. If you don't need | |||
* streaming behaviour - use more simple functions: [[deflate]], | |||
* [[deflateRaw]] and [[gzip]]. | |||
**/ | |||
/* internal | |||
* Deflate.chunks -> Array | |||
* | |||
* Chunks of output data, if [[Deflate#onData]] not overriden. | |||
**/ | |||
/** | |||
* Deflate.result -> Uint8Array|Array | |||
* | |||
* Compressed result, generated by default [[Deflate#onData]] | |||
* and [[Deflate#onEnd]] handlers. Filled after you push last chunk | |||
* (call [[Deflate#push]] with `Z_FINISH` / `true` param) or if you | |||
* push a chunk with explicit flush (call [[Deflate#push]] with | |||
* `Z_SYNC_FLUSH` param). | |||
**/ | |||
/** | |||
* Deflate.err -> Number | |||
* | |||
* Error code after deflate finished. 0 (Z_OK) on success. | |||
* You will not need it in real life, because deflate errors | |||
* are possible only on wrong options or bad `onData` / `onEnd` | |||
* custom handlers. | |||
**/ | |||
/** | |||
* Deflate.msg -> String | |||
* | |||
* Error message, if [[Deflate.err]] != 0 | |||
**/ | |||
/** | |||
* new Deflate(options) | |||
* - options (Object): zlib deflate options. | |||
* | |||
* Creates new deflator instance with specified params. Throws exception | |||
* on bad params. Supported options: | |||
* | |||
* - `level` | |||
* - `windowBits` | |||
* - `memLevel` | |||
* - `strategy` | |||
* - `dictionary` | |||
* | |||
* [http://zlib.net/manual.html#Advanced](http://zlib.net/manual.html#Advanced) | |||
* for more information on these. | |||
* | |||
* Additional options, for internal needs: | |||
* | |||
* - `chunkSize` - size of generated data chunks (16K by default) | |||
* - `raw` (Boolean) - do raw deflate | |||
* - `gzip` (Boolean) - create gzip wrapper | |||
* - `to` (String) - if equal to 'string', then result will be "binary string" | |||
* (each char code [0..255]) | |||
* - `header` (Object) - custom header for gzip | |||
* - `text` (Boolean) - true if compressed data believed to be text | |||
* - `time` (Number) - modification time, unix timestamp | |||
* - `os` (Number) - operation system code | |||
* - `extra` (Array) - array of bytes with extra data (max 65536) | |||
* - `name` (String) - file name (binary string) | |||
* - `comment` (String) - comment (binary string) | |||
* - `hcrc` (Boolean) - true if header crc should be added | |||
* | |||
* ##### Example: | |||
* | |||
* ```javascript | |||
* var pako = require('pako') | |||
* , chunk1 = Uint8Array([1,2,3,4,5,6,7,8,9]) | |||
* , chunk2 = Uint8Array([10,11,12,13,14,15,16,17,18,19]); | |||
* | |||
* var deflate = new pako.Deflate({ level: 3}); | |||
* | |||
* deflate.push(chunk1, false); | |||
* deflate.push(chunk2, true); // true -> last chunk | |||
* | |||
* if (deflate.err) { throw new Error(deflate.err); } | |||
* | |||
* console.log(deflate.result); | |||
* ``` | |||
**/ | |||
function Deflate(options) { | |||
if (!(this instanceof Deflate)) return new Deflate(options); | |||
this.options = utils.assign({ | |||
level: Z_DEFAULT_COMPRESSION, | |||
method: Z_DEFLATED, | |||
chunkSize: 16384, | |||
windowBits: 15, | |||
memLevel: 8, | |||
strategy: Z_DEFAULT_STRATEGY, | |||
to: '' | |||
}, options || {}); | |||
var opt = this.options; | |||
if (opt.raw && (opt.windowBits > 0)) { | |||
opt.windowBits = -opt.windowBits; | |||
} | |||
else if (opt.gzip && (opt.windowBits > 0) && (opt.windowBits < 16)) { | |||
opt.windowBits += 16; | |||
} | |||
this.err = 0; // error code, if happens (0 = Z_OK) | |||
this.msg = ''; // error message | |||
this.ended = false; // used to avoid multiple onEnd() calls | |||
this.chunks = []; // chunks of compressed data | |||
this.strm = new ZStream(); | |||
this.strm.avail_out = 0; | |||
var status = zlib_deflate.deflateInit2( | |||
this.strm, | |||
opt.level, | |||
opt.method, | |||
opt.windowBits, | |||
opt.memLevel, | |||
opt.strategy | |||
); | |||
if (status !== Z_OK) { | |||
throw new Error(msg[status]); | |||
} | |||
if (opt.header) { | |||
zlib_deflate.deflateSetHeader(this.strm, opt.header); | |||
} | |||
if (opt.dictionary) { | |||
var dict; | |||
// Convert data if needed | |||
if (typeof opt.dictionary === 'string') { | |||
// If we need to compress text, change encoding to utf8. | |||
dict = strings.string2buf(opt.dictionary); | |||
} else if (toString.call(opt.dictionary) === '[object ArrayBuffer]') { | |||
dict = new Uint8Array(opt.dictionary); | |||
} else { | |||
dict = opt.dictionary; | |||
} | |||
status = zlib_deflate.deflateSetDictionary(this.strm, dict); | |||
if (status !== Z_OK) { | |||
throw new Error(msg[status]); | |||
} | |||
this._dict_set = true; | |||
} | |||
} | |||
/** | |||
* Deflate#push(data[, mode]) -> Boolean | |||
* - data (Uint8Array|Array|ArrayBuffer|String): input data. Strings will be | |||
* converted to utf8 byte sequence. | |||
* - mode (Number|Boolean): 0..6 for corresponding Z_NO_FLUSH..Z_TREE modes. | |||
* See constants. Skipped or `false` means Z_NO_FLUSH, `true` meansh Z_FINISH. | |||
* | |||
* Sends input data to deflate pipe, generating [[Deflate#onData]] calls with | |||
* new compressed chunks. Returns `true` on success. The last data block must have | |||
* mode Z_FINISH (or `true`). That will flush internal pending buffers and call | |||
* [[Deflate#onEnd]]. For interim explicit flushes (without ending the stream) you | |||
* can use mode Z_SYNC_FLUSH, keeping the compression context. | |||
* | |||
* On fail call [[Deflate#onEnd]] with error code and return false. | |||
* | |||
* We strongly recommend to use `Uint8Array` on input for best speed (output | |||
* array format is detected automatically). Also, don't skip last param and always | |||
* use the same type in your code (boolean or number). That will improve JS speed. | |||
* | |||
* For regular `Array`-s make sure all elements are [0..255]. | |||
* | |||
* ##### Example | |||
* | |||
* ```javascript | |||
* push(chunk, false); // push one of data chunks | |||
* ... | |||
* push(chunk, true); // push last chunk | |||
* ``` | |||
**/ | |||
Deflate.prototype.push = function (data, mode) { | |||
var strm = this.strm; | |||
var chunkSize = this.options.chunkSize; | |||
var status, _mode; | |||
if (this.ended) { return false; } | |||
_mode = (mode === ~~mode) ? mode : ((mode === true) ? Z_FINISH : Z_NO_FLUSH); | |||
// Convert data if needed | |||
if (typeof data === 'string') { | |||
// If we need to compress text, change encoding to utf8. | |||
strm.input = strings.string2buf(data); | |||
} else if (toString.call(data) === '[object ArrayBuffer]') { | |||
strm.input = new Uint8Array(data); | |||
} else { | |||
strm.input = data; | |||
} | |||
strm.next_in = 0; | |||
strm.avail_in = strm.input.length; | |||
do { | |||
if (strm.avail_out === 0) { | |||
strm.output = new utils.Buf8(chunkSize); | |||
strm.next_out = 0; | |||
strm.avail_out = chunkSize; | |||
} | |||
status = zlib_deflate.deflate(strm, _mode); /* no bad return value */ | |||
if (status !== Z_STREAM_END && status !== Z_OK) { | |||
this.onEnd(status); | |||
this.ended = true; | |||
return false; | |||
} | |||
if (strm.avail_out === 0 || (strm.avail_in === 0 && (_mode === Z_FINISH || _mode === Z_SYNC_FLUSH))) { | |||
if (this.options.to === 'string') { | |||
this.onData(strings.buf2binstring(utils.shrinkBuf(strm.output, strm.next_out))); | |||
} else { | |||
this.onData(utils.shrinkBuf(strm.output, strm.next_out)); | |||
} | |||
} | |||
} while ((strm.avail_in > 0 || strm.avail_out === 0) && status !== Z_STREAM_END); | |||
// Finalize on the last chunk. | |||
if (_mode === Z_FINISH) { | |||
status = zlib_deflate.deflateEnd(this.strm); | |||
this.onEnd(status); | |||
this.ended = true; | |||
return status === Z_OK; | |||
} | |||
// callback interim results if Z_SYNC_FLUSH. | |||
if (_mode === Z_SYNC_FLUSH) { | |||
this.onEnd(Z_OK); | |||
strm.avail_out = 0; | |||
return true; | |||
} | |||
return true; | |||
}; | |||
/** | |||
* Deflate#onData(chunk) -> Void | |||
* - chunk (Uint8Array|Array|String): ouput data. Type of array depends | |||
* on js engine support. When string output requested, each chunk | |||
* will be string. | |||
* | |||
* By default, stores data blocks in `chunks[]` property and glue | |||
* those in `onEnd`. Override this handler, if you need another behaviour. | |||
**/ | |||
Deflate.prototype.onData = function (chunk) { | |||
this.chunks.push(chunk); | |||
}; | |||
/** | |||
* Deflate#onEnd(status) -> Void | |||
* - status (Number): deflate status. 0 (Z_OK) on success, | |||
* other if not. | |||
* | |||
* Called once after you tell deflate that the input stream is | |||
* complete (Z_FINISH) or should be flushed (Z_SYNC_FLUSH) | |||
* or if an error happened. By default - join collected chunks, | |||
* free memory and fill `results` / `err` properties. | |||
**/ | |||
Deflate.prototype.onEnd = function (status) { | |||
// On success - join | |||
if (status === Z_OK) { | |||
if (this.options.to === 'string') { | |||
this.result = this.chunks.join(''); | |||
} else { | |||
this.result = utils.flattenChunks(this.chunks); | |||
} | |||
} | |||
this.chunks = []; | |||
this.err = status; | |||
this.msg = this.strm.msg; | |||
}; | |||
/** | |||
* deflate(data[, options]) -> Uint8Array|Array|String | |||
* - data (Uint8Array|Array|String): input data to compress. | |||
* - options (Object): zlib deflate options. | |||
* | |||
* Compress `data` with deflate algorithm and `options`. | |||
* | |||
* Supported options are: | |||
* | |||
* - level | |||
* - windowBits | |||
* - memLevel | |||
* - strategy | |||
* - dictionary | |||
* | |||
* [http://zlib.net/manual.html#Advanced](http://zlib.net/manual.html#Advanced) | |||
* for more information on these. | |||
* | |||
* Sugar (options): | |||
* | |||
* - `raw` (Boolean) - say that we work with raw stream, if you don't wish to specify | |||
* negative windowBits implicitly. | |||
* - `to` (String) - if equal to 'string', then result will be "binary string" | |||
* (each char code [0..255]) | |||
* | |||
* ##### Example: | |||
* | |||
* ```javascript | |||
* var pako = require('pako') | |||
* , data = Uint8Array([1,2,3,4,5,6,7,8,9]); | |||
* | |||
* console.log(pako.deflate(data)); | |||
* ``` | |||
**/ | |||
function deflate(input, options) { | |||
var deflator = new Deflate(options); | |||
deflator.push(input, true); | |||
// That will never happens, if you don't cheat with options :) | |||
if (deflator.err) { throw deflator.msg; } | |||
return deflator.result; | |||
} | |||
/** | |||
* deflateRaw(data[, options]) -> Uint8Array|Array|String | |||
* - data (Uint8Array|Array|String): input data to compress. | |||
* - options (Object): zlib deflate options. | |||
* | |||
* The same as [[deflate]], but creates raw data, without wrapper | |||
* (header and adler32 crc). | |||
**/ | |||
function deflateRaw(input, options) { | |||
options = options || {}; | |||
options.raw = true; | |||
return deflate(input, options); | |||
} | |||
/** | |||
* gzip(data[, options]) -> Uint8Array|Array|String | |||
* - data (Uint8Array|Array|String): input data to compress. | |||
* - options (Object): zlib deflate options. | |||
* | |||
* The same as [[deflate]], but create gzip wrapper instead of | |||
* deflate one. | |||
**/ | |||
function gzip(input, options) { | |||
options = options || {}; | |||
options.gzip = true; | |||
return deflate(input, options); | |||
} | |||
exports.Deflate = Deflate; | |||
exports.deflate = deflate; | |||
exports.deflateRaw = deflateRaw; | |||
exports.gzip = gzip; | |||
},{"./utils/common":1,"./utils/strings":2,"./zlib/deflate":5,"./zlib/messages":6,"./zlib/zstream":8}]},{},[])("/lib/deflate.js") | |||
}); |